Problem 1. Matrices are Linear Functions. An $m \times n$ matrix A can be viewed as a function from \mathbb{R}^{n} to \mathbb{R}^{m}, that sends each vector $\mathbf{x} \in \mathbb{R}^{n}$ to the vector $A \mathbf{x} \in \mathbb{R}^{m}$. Show that this function satisfies the following property:

$$
A(s \mathbf{u}+t \mathbf{v})=s A \mathbf{u}+t A \mathbf{v} \quad \text { for all } s, t \in \mathbb{R} \text { and } \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n} .
$$

[Hint: Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ be the column vectors of A. Then by definition we have $A \mathbf{x}=$ $x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$ for any vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.]

Proof. Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ and let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ be the column vectors of A. Then by definition we have

$$
\begin{aligned}
& A \mathbf{u}=u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+\cdots+u_{n} \mathbf{a}_{n} \\
& A \mathbf{v}=v_{1} \mathbf{a}_{1}+v_{2} \mathbf{a}_{2}+\cdots+v_{n} \mathbf{a}_{n}
\end{aligned}
$$

and hence for any $s, t \in \mathbb{R}$ we have

$$
\begin{aligned}
s A \mathbf{u}+t A \mathbf{v} & =s\left(u_{1} \mathbf{a}_{1}+u_{2} \mathbf{a}_{2}+\cdots+u_{n} \mathbf{a}_{n}\right)+t\left(v_{1} \mathbf{a}_{1}+v_{2} \mathbf{a}_{2}+\cdots+v_{n} \mathbf{a}_{n}\right) \\
& =\left(s u_{1}+t v_{1}\right) \mathbf{a}_{1}+\left(s u_{2}+t v_{2}\right) \mathbf{a}_{2}+\cdots+\left(s u_{n}+t v_{n}\right) \mathbf{a}_{n} .
\end{aligned}
$$

On the other hand, by definition we have $s \mathbf{u}+t \mathbf{v}=\left(s u_{1}+t v_{1}, \ldots, s u_{n}+t v_{n}\right)$, and hence

$$
A(s \mathbf{u}+t \mathbf{v})=\left(s u_{1}+t v_{1}\right) \mathbf{a}_{1}+\left(s u_{2}+t v_{2}\right) \mathbf{a}_{2}+\cdots+\left(s u_{n}+t v_{n}\right) \mathbf{a}_{n} .
$$

[Remark: This is a boring computation, but someone had to do it. The fact that $\mathbf{x} \mapsto A \mathbf{x}$ is a linear function is important because we use this property to define matrix multiplication.]

Problem 2. Matching Shapes. Let A be a 3×2 matrix, let B be a 3×3 matrix, let \mathbf{x} be a 2×1 matrix, and let \mathbf{y} be a 3×1 matrix. All of the entries of these matrices are equal to 1. Compute the following matrices or say why they don't exist:

$$
A B, \quad B A, \quad A^{T} B, \quad \mathbf{x}^{T} \mathbf{y}, \quad \mathbf{x}^{T} \mathbf{x}, \quad \mathbf{x x}^{T}, \quad \mathbf{y}^{T} A \mathbf{x}, \quad \mathbf{x}^{T} A^{T} B \mathbf{y} .
$$

Explicitly, we have

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{x}=\binom{1}{1}, \quad \mathbf{y}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

We note that $A B$ and $\mathbf{x}^{T} \mathbf{y}$ do not exist because

$$
\begin{aligned}
& (\# \text { cols } A)=2 \neq 3=(\# \text { rows } B) \text {, } \\
& \left(\# \operatorname{cols} \mathbf{x}^{T}\right)=2 \neq 3=(\# \text { rows } \mathbf{y}) .
\end{aligned}
$$

Here are the rest of the computations:

$$
B A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1+1+1 & 1+1+1 \\
1+1+1 & 1+1+1 \\
1+1+1 & 1+1+1
\end{array}\right)=\left(\begin{array}{ll}
3 & 3 \\
3 & 3 \\
3 & 3
\end{array}\right)
$$

$$
\begin{aligned}
& A^{T} B=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1+1+1 & 1+1+1 & 1+1+1 \\
1+1+1 & 1+1+1 & 1+1+1
\end{array}\right)=\left(\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right), \\
& \mathbf{x}^{T} \mathbf{x}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{1}=1+1=2, \\
& \mathrm{xx}^{T}=\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \\
& \mathbf{y}^{T} A \mathbf{x}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{1}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)=2+2+2=6, \\
& \mathbf{x}^{T} A^{T} B \mathbf{y}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{lll}
3 & 3 & 3 \\
3 & 3 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{9}{9}=9+9=18 .
\end{aligned}
$$

Problem 3. Special Matrices. Find specific 2×2 matrices with the following properties:
(a) $N \neq 0$ and $N^{2}=0$,
(b) $F \neq I$ and $F^{2}=I$,
(c) $P \neq 0$ and $P \neq I$ and $P^{2}=P$,
(d) $R \neq I$ and $R^{2} \neq I$ and $R^{3} \neq I$ and $R^{4}=I$.
[Remark: Each part has infinitely many correct answers. In fact, if B is a solution to one of these problems then $A B A^{-1}$ is also a solution for any invertible A. Changing B to $A B A^{-1}$ is called a change of coordinates. It doesn't really affect what the matrix does.]
(a): Any matrix of the form $N=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ will work.
(b): Any reflection matrix will work. For example: $F=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(c): Any projection matrix will work. For example: $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
(d): Rotation by 90° will work: $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Problem 4. Computing a Matrix Inverse. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 3 & 4
\end{array}\right)
$$

(a) Compute the RREF of the matrix $(A \mid I)$, which has the form $(I \mid B)$ for some B.
(b) Check that $A B=I$ and $B A=I$.
(c) Use the matrix B to solve the following linear system, without doing any extra work:

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x+2 y+2 z=5 \\
x+3 y+4 z=4
\end{array}\right.
$$

[Hint: Write the system as $A \mathbf{x}=\mathbf{b}$. Multiply on the left by B.]
(a): Here is the computation:

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
(1) & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
1 & 3 & 4 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll|lll}
L(1) & 1 & 1 & 1 & 0 & 0 \\
0 & (1) & 1 & -1 & 1 & 0 \\
0 & 2 & 3 & -1 & 0 & 1
\end{array}\right)_{(3)=(3)-(2)}^{(3)}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c|ccc}
(1) & 1 & 0 \\
0 & (1) & \left.\left.\begin{array}{ccc}
0 & 2 & -1 \\
0 \\
-2 & 3 & -1 \\
0 & 0 & (1) \\
1 & -2 & 1
\end{array}\right) \begin{array}{c}
(1)=(1)-(3) \\
(2)=(2)
\end{array}\right)(3)
\end{array}\right. \\
& \left(\begin{array}{lll|l|l|l|l}
14 & 0 & 0 \\
0 & (1) & 2 & -1 & 0 \\
0 & -2 & 3 & -1 \\
0 & 0 & (1) & 1 & -2 & 1
\end{array}\right)(1)=(1)-(2)
\end{aligned}
$$

(b): I have checked it.
(c): First we convert the system to a matrix equation $A \mathbf{x}=\mathbf{b}$. Then we multiply both sides on the left by the inverse matrix $B=A^{-1}$:

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 3 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
5 \\
4
\end{array}\right) \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{c}
1 \\
5 \\
-3
\end{array}\right) .
\end{aligned}
$$

Problem 5. Invertibility of Matrices. Prove the following statements:
(a) If A^{-1} exists then $A \mathbf{x}=A \mathbf{y}$ implies $\mathbf{x}=\mathbf{y}$.
(b) If $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ then A^{-1} does not exist. [Hint: Use part (a) and the fact that $A \mathbf{0}=\mathbf{0}$ for any matrix A.]
(c) If A^{-1} exists then $\left(A^{T}\right)^{-1}$ exists. [Hint: It is a general fact that $(A B)^{T}=B^{T} A^{T}$ for any matrices A, B. Substitute $B=A^{-1}$ into this formula.]
(d) If A and B are square of the same size, and if A^{-1} and B^{-1} both exist, then $(A B)^{-1}$ exists. [Hint: Show that the matrix $B^{-1} A^{-1}$, which exists, is the desired inverse.]
(a): If $A \mathbf{x}=A \mathbf{y}$ and if A^{-1} exists then we can multiply on the left to obtain

$$
\begin{aligned}
A \mathbf{x} & =A \mathbf{y} \\
A^{-1} A \mathbf{x} & =A^{-1} A \mathbf{y} \\
I \mathbf{x} & =I \mathbf{y} \\
\mathbf{x} & =\mathbf{y} .
\end{aligned}
$$

(b): Let $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ and assume for contradiction that A^{-1} exists. Then by multiplying on the left by A^{-1} we obtain a contradiction

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{0} \\
A^{-1} A \mathbf{x} & =A^{-1} \mathbf{0} \\
I \mathbf{x} & =\mathbf{0} \\
\mathbf{x} & =\mathbf{0} .
\end{aligned}
$$

[Remark: More generally, if f is any kind of function that sends two different points to the same place, say $f(x)=f(y)$ for some $x \neq y$, then this function cannot have an inverse.]
(c): Suppose that A^{-1} exists. If B is some matrix such that $A B$ is defined then we always have the identity $(A B)^{T}=B^{T} A^{T}$. Now substitute $B=A^{-1}$ to obtain

$$
\begin{aligned}
(A B)^{T} & =B^{T} A^{T} \\
\left(A A^{-1}\right)^{T} & =\left(A^{-1}\right)^{T} A^{T} \\
I^{T} & =\left(A^{-1}\right)^{T} A^{T} \\
I & =\left(A^{-1}\right)^{T} A^{T} .
\end{aligned}
$$

In other words, A^{T} is invertible with inverse $\left(A^{-1}\right)^{T}$.
(d): If A^{-1}, B^{-1} and $A B$ exist then we have

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I .
$$

In other words, $A B$ is invertible with inverse $B^{-1} A^{-1}$. [Intuition: The function $A B$ "does B first, then does A." The function $B^{-1} A^{-1}$ "undoes A first, then undoes B."]
[Remark: It is important to remember that matrix multiplication is not commutative. For example, the following proof is wrong:

$$
(A B)\left(B^{-1} A^{-1}\right)=\left(A A^{-1}\right)\left(B B^{-1}\right)=I I=I .
$$

We are not allowed to move the rightmost A^{-1} past the B^{\prime} s.]

