Problem 1. Matrices are Linear Functions. An $m \times n$ matrix A can be viewed as a function from \mathbb{R}^{n} to \mathbb{R}^{m}, that sends each vector $\mathbf{x} \in \mathbb{R}^{n}$ to the vector $A \mathbf{x} \in \mathbb{R}^{m}$. Show that this function satisfies the following property:

$$
A(s \mathbf{u}+t \mathbf{v})=s A \mathbf{u}+t A \mathbf{v} \quad \text { for all } s, t \in \mathbb{R} \text { and } \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n} .
$$

[Hint: Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{m}$ be the column vectors of A. Then by definition we have $A \mathbf{x}=$ $x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n}$ for any vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.]

Problem 2. Matching Shapes. Let A be a 3×2 matrix, let B be a 3×3 matrix, let x be a 2×1 matrix, and let \mathbf{y} be a 3×1 matrix. All of the entries of these matrices are equal to 1. Compute the following matrices or say why they don't exist:

$$
A B, \quad B A, \quad A^{T} B, \quad \mathbf{x}^{T} \mathbf{y}, \quad \mathbf{x}^{T} \mathbf{x}, \quad \mathbf{x x}^{T}, \quad \mathbf{y}^{T} A \mathbf{x}, \quad \mathbf{x}^{T} A^{T} B \mathbf{y} .
$$

Problem 3. Special Matrices. Find specific 2×2 matrices with the following properties:
(a) $N \neq 0$ and $N^{2}=0$,
(b) $F \neq I$ and $F^{2}=I$,
(c) $P \neq 0$ and $P \neq I$ and $P^{2}=P$,
(d) $R \neq I$ and $R^{2} \neq I$ and $R^{3} \neq I$ and $R^{4}=I$.

Problem 4. Computing a Matrix Inverse. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 3 & 4
\end{array}\right) .
$$

(a) Compute the RREF of the matrix $(A \mid I)$, which has the form $(I \mid B)$ for some B.
(b) Check that $A B=I$ and $B A=I$.
(c) Use the matrix B to solve the following linear system, without doing any extra work:

$$
\left\{\begin{array}{c}
x+y+z=3 \\
x+2 y+2 z=5 \\
x+3 y+4 z=4
\end{array}\right.
$$

[Hint: Write the system as $A \mathbf{x}=\mathbf{b}$. Multiply on the left by B.]

Problem 5. Invertibility of Matrices. Prove the following statements:
(a) If A^{-1} exists then $A \mathbf{x}=A \mathbf{y}$ implies $\mathbf{x}=\mathbf{y}$.
(b) If $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$ then A^{-1} does not exist. [Hint: Use part (a) and the fact that $A \mathbf{0}=\mathbf{0}$ for any matrix A.]
(c) If A^{-1} exists then $\left(A^{T}\right)^{-1}$ exists. [Hint: It is a general fact that $(A B)^{T}=B^{T} A^{T}$ for any matrices A, B. Substitute $B=A^{-1}$ into this formula.]
(d) If A and B are square of the same size, and if A^{-1} and B^{-1} both exist, then $(A B)^{-1}$ exists. [Hint: Show that the matrix $B^{-1} A^{-1}$, which exists, is the desired inverse.]

