Math 210 Fall 2020
Homework 3 Drew Armstrong

Problem 1. Gaussian Elimination. Solve the following system by converting it to a matrix
and then putting the matrix in Reduced Row Echelon Form:

(1) r + 2y + 3z = 4,
(2) r + 2y + 4z = 6,
(3) r + 2y + 5z = 8.

Does the solution have the expected number of dimensions? Why or why not?
Solution. Before doing anything, we expect that 3 linear equations in 3 unknowns will have a

3 — 3 = 0 dimensional solution, i.e., the solution will be a point. Now we write the system as
a matrix and perform Gaussian elimination:
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Then we convert the RREF of the matrix back into a system of linear equations:

z + 2y + 0 = =2
0O+ 0 4+ =z = 2
0O+ 0 + 0 = 0.

We observe that z,z are pivot variables and y is free. To clean up the notation we define
t = z. Then the solution is

x -2 -2t -2 —2
z 2 2 0

This is a 1-plane (line) in 3-dimensional space, which is not what we expected. The reason this
happened is because the three original equations had a nontrivial linear relation, which
caused a row of zeroes in the RREF. In the following bonus discussion we will find this relation.

Bonus Discussion. Row relations in a matrix A correspond to column relations in the trans-
posed matrix A”. To find all column relations in A” we compute the RREF:
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In RREF(AT) we observe that

—1(column 1) + 2(column 2) = (column 3).

Since column relations are unchanged by row operations, the same relation holds in
the matrix A”. Therefore in the original matrix A we have

—1(row 1) + 2(row 2) = (row 3).
See Problem 3 for another example like this.

Problem 2. More Gaussian Elimination. Solve the following system by converting it to
a matrix and then putting the matrix in Reduced Row Echelon Form:

1) (21 + 200 + 23 + 0 + 225 = 1,
(2) r1 4+ 220 + 223 + —-3x4 + 3x5 = 1,
B) |l m1 + 222 + 0 + 3z4 + 225 = 3.

Does the solution have the expected number of dimensions? Why or why not?

Solution. Before doing anything, we expect that 3 linear equations in 5 unknowns will have
a b — 3 = 2 dimensional solution, i.e., the solution will be a 2-plane living in 5-dimensional
space. Now we write the system as a matrix and perform Gaussian elimination:
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Then we convert the RREF of the matrix back into a system of linear equations:

1 + 22 + 0 + 34 + 0 = -1,
O + 0 4+ a3 + —3z4 + 0 = =2
O + 0 4+ 0 + 0 + x5 = 2.

We observe that x1, x3, 5 are pivot variables and zs, x4 are free. To clean up the notation we
define s = x5 and ¢ = z4. Then the solution is

. —1—2s— 3t -1 -2 -3
x; s 0 1 0
2= —2+ 3t =|-2|+s| o |+¢t]| 3
x3 t 0 0 1

4 2 2 0 0

This is a 2-plane in 5-dimensional space, as expected.

Problem 3. Column Relations. Put the following matrix in Reduced Row Echelon Form:

1 2 4
A=13 4 6
2 35
Use your result to find a nontrivial relation among the column vectors:
1 2 4 0
r|{3) +s|4]+t]16] =10
2 3 5 0

for some r,s,t € R that are not all zero. [Hint: Relations among columns are not changed
by row operations, so it is easier to find a relation among the columns of RREF(A).]

Solution. We perform Gaussian elimination to obtain RREF(A):
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In RREF(A) we observe that —2(column 1) + 3(column 2) = (column 3):

1 0 —2
210 +3(1] =13
0 0 0

Since row operations preserve column relations, the same column relation must hold in A.
And, indeed, we observe that

1 2 4
2|3 +3|4] =16
2 3 S
Finally, we can rewrite this relation in the desired form:
1 2 4 0
23] +3[|4]-116|=10
2 3 5 0

Bonus Discussion. Let B be some arbitrary 3 x 3 matrix and suppose that

1 00
RREF(B)= [0 1 0
001
Then there is no nontrivial column relation in B or in RREF(B) because
1 0 0 0
r{O0|+s|1]+¢]10] =10 impliles r =s =t = 0.
0 0 1 0

In other words, the columns of B must be independent.

Problem 4. The Solution Set of a Linear System is Flat. Consider the following system

of m linear equations in n unknowns, where x = (x1,...,2,) and a; = (a;1, a2, - - ., Qin):
ajex = b,
azex = by,
a,ex = by,

If x = p and x = q are any two points in the solution set, prove that every point of the line
x = (1 — t)p + tq is also in the solution set. [Hint: Assuming that a; e p =b; and a; eq = b;
for all i, you are being asked to show that a; e [(1 — ¢)p + tq] = b; for all i.] Remark: This
implies that the solution set is a d-plane in R™ for some d, or it is empty.

Proof. Let x = p and x = q be points of the solution set. By definition, this means that
a;ep==>0;and a;eq=05; foralli=1,...,m. Then for all i = 1,...,m and for all scalars ¢
we observe that

ae[(l—t)p+tq=(1—t)a;ep+ta;,eq=(1—1t)b +tb; =b;,
which means that the point (1 — ¢)p + tq is also in the solution set. O

Bonus Discussion. If two points are in the solution set of a linear system then the whole line
that they generate is also in the solution set. Here is a picture:
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Problem 5. Orthogonal Complement of a Subspace. A d-dimensional subspace of R™
is just a d-plane in R™ that contains the origin. If uy,...,uy € R" are independent vectors
(assume d < n) then their span is a d-dimensional subspace:

U:{t1u1+-~-+tdud:tl,...,tdER}.

We define the orthogonal complement of this subspace as the set of vectors that are simulta-
neously perpendicular to every vector in U E]

Ul ={x€R":u;ex =0 for all i}.

Explain why Ut is an (n — d)-dimensional subspace of R™. [Hint: The set UL is just the
solution set of the linear equations u; e x = 0 for all i. We can express this system as a
d x (n+1) matrix A. Since the rows of A are independent, we know that RREF(A) will have
d pivots. So how many free variables does the system have?]

[Example: If uy, us € R? are independent vectors in 3-dimensional space, then U C R? is the
plane that they span and U+ C R? is the line that is perpendicular to this plane, i.e., the line
given by the cross product u; x uy. Hence we have dim U 4+ dim U+ = 2+ 1 = 3 as expected.]

Proof. By definition, U+ C R™ is the solution set of the following linear system:

uex = 0,
wex = 0,
uysex = 0.

We observe that x = 0 is always a solution, so U~ is some f-plane passing through the origin
and we will prove that f = n—d. To do this, we recall that the dimension of the solution
set equals the number of free variables in the RREF of the system. (This is why I
used the letter f.) Since the row vectors are independent (indeed, we assumed that uy, ..., uy
are independent) there will be a pivot in each row of the RREF, hence there will be d pivot
variables. Finally, we conclude that the number of free variables is

f = #(free variables) = n — #(pivot variables) = n — d.

Remark: I realize that this is very abstract. See the course notes for discussion.

1Remark: If x is perpendicular to every basis vector u;, then it is also perpendicular to every linear combi-
nation tiu; + - - - 4 tqug, hence it is perpendicular to every vector in the subspace U.



