
Math 210 Fall 2020
Homework 3 Drew Armstrong

Problem 1. Gaussian Elimination. Solve the following system by converting it to a matrix
and then putting the matrix in Reduced Row Echelon Form:

(1)
(2)
(3)

 x + 2y + 3z = 4,
x + 2y + 4z = 6,
x + 2y + 5z = 8.

Does the solution have the expected number of dimensions? Why or why not?

Solution. Before doing anything, we expect that 3 linear equations in 3 unknowns will have a
3− 3 = 0 dimensional solution, i.e., the solution will be a point. Now we write the system as
a matrix and perform Gaussian elimination:

Then we convert the RREF of the matrix back into a system of linear equations: x + 2y + 0 = −2,
0 + 0 + z = 2,
0 + 0 + 0 = 0.

We observe that x, z are pivot variables and y is free. To clean up the notation we define
t = z. Then the solution isx

y
z

 =

−2− 2t
t
2

 =

−2
0
2

 + t

−2
1
0

 .

This is a 1-plane (line) in 3-dimensional space, which is not what we expected. The reason this
happened is because the three original equations had a nontrivial linear relation, which
caused a row of zeroes in the RREF. In the following bonus discussion we will find this relation.

Bonus Discussion. Row relations in a matrix A correspond to column relations in the trans-
posed matrix AT . To find all column relations in AT we compute the RREF:



In RREF(AT ) we observe that

−1(column 1) + 2(column 2) = (column 3).

Since column relations are unchanged by row operations, the same relation holds in
the matrix AT . Therefore in the original matrix A we have

−1(row 1) + 2(row 2) = (row 3).

See Problem 3 for another example like this.

Problem 2. More Gaussian Elimination. Solve the following system by converting it to
a matrix and then putting the matrix in Reduced Row Echelon Form:

(1)
(2)
(3)

 x1 + 2x2 + x3 + 0 + 2x5 = 1,
x1 + 2x2 + 2x3 + −3x4 + 3x5 = 1,
x1 + 2x2 + 0 + 3x4 + 2x5 = 3.

Does the solution have the expected number of dimensions? Why or why not?

Solution. Before doing anything, we expect that 3 linear equations in 5 unknowns will have
a 5 − 3 = 2 dimensional solution, i.e., the solution will be a 2-plane living in 5-dimensional
space. Now we write the system as a matrix and perform Gaussian elimination:



Then we convert the RREF of the matrix back into a system of linear equations: x1 + 2x2 + 0 + 3x4 + 0 = −1,
0 + 0 + x3 + −3x4 + 0 = −2,
0 + 0 + 0 + 0 + x5 = 2.

We observe that x1, x3, x5 are pivot variables and x2, x4 are free. To clean up the notation we
define s = x2 and t = x4. Then the solution is

x1
x2
x3
x4

 =


−1− 2s− 3t

s
−2 + 3t

t
2

 =


−1
0
−2
0
2

 + s


−2
1
0
0
0

 + t


−3
0
3
1
0

 .

This is a 2-plane in 5-dimensional space, as expected.

Problem 3. Column Relations. Put the following matrix in Reduced Row Echelon Form:

A =

1 2 4
3 4 6
2 3 5

 .

Use your result to find a nontrivial relation among the column vectors:

r

1
3
2

 + s

2
4
3

 + t

4
6
5

 =

0
0
0


for some r, s, t ∈ R that are not all zero. [Hint: Relations among columns are not changed
by row operations, so it is easier to find a relation among the columns of RREF(A).]

Solution. We perform Gaussian elimination to obtain RREF(A):



In RREF(A) we observe that −2(column 1) + 3(column 2) = (column 3):

−2

1
0
0

 + 3

0
1
0

 =

−2
3
0

 .

Since row operations preserve column relations, the same column relation must hold in A.
And, indeed, we observe that

−2

1
3
2

 + 3

2
4
3

 =

4
6
5

 .

Finally, we can rewrite this relation in the desired form:

−2

1
3
2

 + 3

2
4
3

− 1

4
6
5

 =

0
0
0

 .

Bonus Discussion. Let B be some arbitrary 3× 3 matrix and suppose that

RREF(B) =

1 0 0
0 1 0
0 0 1

 .

Then there is no nontrivial column relation in B or in RREF(B) because

r

1
0
0

 + s

0
1
0

 + t

0
0
1

 =

0
0
0

 impliles r = s = t = 0.

In other words, the columns of B must be independent.

Problem 4. The Solution Set of a Linear System is Flat. Consider the following system
of m linear equations in n unknowns, where x = (x1, . . . , xn) and ai = (ai1, ai2, . . . , ain):

a1 • x = b1,
a2 • x = b2,

...
am • x = bm.

If x = p and x = q are any two points in the solution set, prove that every point of the line
x = (1− t)p + tq is also in the solution set. [Hint: Assuming that ai • p = bi and ai • q = bi
for all i, you are being asked to show that ai • [(1 − t)p + tq] = bi for all i.] Remark: This
implies that the solution set is a d-plane in Rn for some d, or it is empty.

Proof. Let x = p and x = q be points of the solution set. By definition, this means that
ai • p = bi and ai • q = bi for all i = 1, . . . ,m. Then for all i = 1, . . . ,m and for all scalars t
we observe that

ai • [(1− t)p + tq] = (1− t)ai • p + tai • q = (1− t)bi + tbi = bi,

which means that the point (1− t)p + tq is also in the solution set. �

Bonus Discussion. If two points are in the solution set of a linear system then the whole line
that they generate is also in the solution set. Here is a picture:



Problem 5. Orthogonal Complement of a Subspace. A d-dimensional subspace of Rn

is just a d-plane in Rn that contains the origin. If u1, . . . ,ud ∈ Rn are independent vectors
(assume d ≤ n) then their span is a d-dimensional subspace:

U = {t1u1 + · · ·+ tdud : t1, . . . , td ∈ R}.
We define the orthogonal complement of this subspace as the set of vectors that are simulta-
neously perpendicular to every vector in U :1

U⊥ = {x ∈ Rn : ui • x = 0 for all i}.
Explain why U⊥ is an (n − d)-dimensional subspace of Rn. [Hint: The set U⊥ is just the
solution set of the linear equations ui • x = 0 for all i. We can express this system as a
d× (n+ 1) matrix A. Since the rows of A are independent, we know that RREF(A) will have
d pivots. So how many free variables does the system have?]

[Example: If u1,u2 ∈ R3 are independent vectors in 3-dimensional space, then U ⊆ R3 is the
plane that they span and U⊥ ⊆ R3 is the line that is perpendicular to this plane, i.e., the line
given by the cross product u1×u2. Hence we have dimU + dimU⊥ = 2 + 1 = 3 as expected.]

Proof. By definition, U⊥ ⊆ Rn is the solution set of the following linear system:
u1 • x = 0,
u2 • x = 0,

...
ud • x = 0.

We observe that x = 0 is always a solution, so U⊥ is some f -plane passing through the origin
and we will prove that f = n−d. To do this, we recall that the dimension of the solution
set equals the number of free variables in the RREF of the system. (This is why I
used the letter f .) Since the row vectors are independent (indeed, we assumed that u1, . . . ,ud

are independent) there will be a pivot in each row of the RREF, hence there will be d pivot
variables. Finally, we conclude that the number of free variables is

f = #(free variables) = n−#(pivot variables) = n− d.

�
Remark: I realize that this is very abstract. See the course notes for discussion.

1Remark: If x is perpendicular to every basis vector ui, then it is also perpendicular to every linear combi-
nation t1u1 + · · ·+ tdud, hence it is perpendicular to every vector in the subspace U .


