Problem 1. Gaussian Elimination. Solve the following system by converting it to a matrix and then putting the matrix in Reduced Row Echelon Form:

$$
\begin{aligned}
& \text { (1) } \\
& \text { (2) }
\end{aligned}\left\{\begin{array}{l}
x+2 y+3 z=4, \\
x+2 y+4 z=6, \\
x+2 y+5 z=8
\end{array}\right.
$$

Does the solution have the expected number of dimensions? Why or why not?

Solution. Before doing anything, we expect that 3 linear equations in 3 unknowns will have a $3-3=0$ dimensional solution, i.e., the solution will be a point. Now we write the system as a matrix and perform Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{llll}
(1) & 2 & 3 & 4 \\
1 & 2 & 4 & 6 \\
1 & 2 & 5 & 8
\end{array}\right) \text { (3) } \\
& \left(\begin{array}{llll}
(1) & 2 & 3 & 4 \\
0 & 0 & (1) & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \begin{array}{l}
\text { (1) } \\
\text { (2) }=(2)-1(1) \\
\text { (3) }=(3)-1
\end{array} \\
& \left(\begin{array}{llll}
(1) & 2 & 3 & 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
\text { (1) } \\
(3) \\
(3)=(3)-1(2)
\end{array} \\
& \left(\begin{array}{cccc}
(1) & 2 & 0 & -2 \\
0 & 0 & (1) & 2 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
(1)=(2)-3(2) \\
(3)
\end{array}\right.
\end{aligned}
$$

Then we convert the RREF of the matrix back into a system of linear equations:

$$
\left\{\begin{array}{l}
x+2 y+0=-2, \\
0+0+z=2, \\
0+0+0=0 .
\end{array}\right.
$$

We observe that x, z are pivot variables and y is free. To clean up the notation we define $t=z$. Then the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2-2 t \\
t \\
2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right)+t\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) .
$$

This is a 1-plane (line) in 3-dimensional space, which is not what we expected. The reason this happened is because the three original equations had a nontrivial linear relation, which caused a row of zeroes in the RREF. In the following bonus discussion we will find this relation.

Bonus Discussion. Row relations in a matrix A correspond to column relations in the transposed matrix A^{T}. To find all column relations in A^{T} we compute the RREF:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right) \xrightarrow{\text { RREF }}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

In $\operatorname{RREF}\left(A^{T}\right)$ we observe that

$$
-1(\text { column } 1)+2(\text { column } 2)=(\text { column } 3) .
$$

Since column relations are unchanged by row operations, the same relation holds in the matrix A^{T}. Therefore in the original matrix A we have

$$
-1(\text { row } 1)+2(\text { row } 2)=(\text { row } 3)
$$

See Problem 3 for another example like this.
Problem 2. More Gaussian Elimination. Solve the following system by converting it to a matrix and then putting the matrix in Reduced Row Echelon Form:

$$
\begin{aligned}
& \text { (1) } \\
& \text { (2) } \\
& (3)
\end{aligned}\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}+00+2 x_{5}=1, \\
x_{1}+2 x_{2}+2 x_{3}+-3 x_{4}+3 x_{5}=1, \\
x_{1}+2 x_{2}+0+3 x_{4}+2 x_{5}=3 .
\end{array}\right.
$$

Does the solution have the expected number of dimensions? Why or why not?
Solution. Before doing anything, we expect that 3 linear equations in 5 unknowns will have a $5-3=2$ dimensional solution, i.e., the solution will be a 2 -plane living in 5 -dimensional space. Now we write the system as a matrix and perform Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{llllll}
(1) & 2 & 1 & 0 & 2 & 1 \\
1 & 2 & 2 & -3 & 3 & 1 \\
1 & 2 & 0 & 3 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
(1) \\
(2) \\
(3)
\end{array}\right. \\
& \left(\begin{array}{llllll}
(1) & 2 & 1 & 0 & 2 & 1 \\
0 & 0 & (1) & -3 & 1 & 0 \\
0 & 0 & -1 & 3 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
(1) \\
(2) \\
(3)=(2)-1(1)-1(1) \\
(1) \\
0
\end{array} 0\right. \\
& 0
\end{aligned} 0
$$

Then we convert the RREF of the matrix back into a system of linear equations:

$$
\left\{\begin{array}{ccccccc}
x_{1}+2 x_{2} & +0+3 x_{4}+0 & =-1 \\
0+0 & +x_{3}+-3 x_{4}+0 & = & -2 \\
0+0+0+0 & +x_{5} & =2
\end{array}\right.
$$

We observe that x_{1}, x_{3}, x_{5} are pivot variables and x_{2}, x_{4} are free. To clean up the notation we define $s=x_{2}$ and $t=x_{4}$. Then the solution is

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-1-2 s-3 t \\
s \\
-2+3 t \\
t \\
2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
-2 \\
0 \\
2
\end{array}\right)+s\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
0 \\
3 \\
1 \\
0
\end{array}\right) .
$$

This is a 2 -plane in 5 -dimensional space, as expected.
Problem 3. Column Relations. Put the following matrix in Reduced Row Echelon Form:

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \\
3 & 4 & 6 \\
2 & 3 & 5
\end{array}\right)
$$

Use your result to find a nontrivial relation among the column vectors:

$$
r\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+s\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right)+t\left(\begin{array}{l}
4 \\
6 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

for some $r, s, t \in \mathbb{R}$ that are not all zero. [Hint: Relations among columns are not changed by row operations, so it is easier to find a relation among the columns of $\operatorname{RREF}(A)$.]

Solution. We perform Gaussian elimination to obtain $\operatorname{RREF}(A)$:

$$
\begin{aligned}
& \left(\begin{array}{lll}
(1) & 2 & 4 \\
3 & 4 & 6 \\
2 & 3 & 5
\end{array}\right) \begin{array}{l}
\text { (1) } \\
(2) \\
(3)
\end{array} \\
& \left(\begin{array}{ccc}
\text { (1) } & 2 & 4 \\
0 & (-2) & -6 \\
0 & -1) & -3
\end{array}\right) \begin{array}{l}
(1) \\
\text { (2) }
\end{array}=(2)-3(1) \\
& \left(\begin{array}{ccc}
(1) & 2 & 4 \\
0 & (-2) & -6 \\
0 & 0 & 0
\end{array}\right)^{(1)} \begin{array}{l}
\text { (2) } \\
(3)
\end{array}=(3)+\frac{1}{2}(2) \\
& \left(\begin{array}{ccc}
\text { (1) } & 2 & 4 \\
0 & (1) & 3 \\
0 & 0 & 0
\end{array}\right)^{(3)} \begin{array}{l}
\text { (1) } \\
(2)
\end{array}=-\frac{1}{2}(2) \\
& \left(\begin{array}{ccc}
1(1) & 0 & -2 \\
0 & (1) & 3 \\
0 & 0 & 0
\end{array}\right)_{(3)}^{(1)}=(1)-2(2)
\end{aligned}
$$

$\operatorname{In} \operatorname{RREF}(A)$ we observe that $-2($ column 1$)+3(\operatorname{column} 2)=(\operatorname{column} 3):$

$$
-2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right) .
$$

Since row operations preserve column relations, the same column relation must hold in A. And, indeed, we observe that

$$
-2\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+3\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right)=\left(\begin{array}{l}
4 \\
6 \\
5
\end{array}\right) .
$$

Finally, we can rewrite this relation in the desired form:

$$
-2\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+3\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right)-1\left(\begin{array}{l}
4 \\
6 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Bonus Discussion. Let B be some arbitrary 3×3 matrix and suppose that

$$
\operatorname{RREF}(B)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then there is no nontrivial column relation in B or in $\operatorname{RREF}(B)$ because

$$
r\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+s\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { impliles } r=s=t=0 .
$$

In other words, the columns of B must be independent.
Problem 4. The Solution Set of a Linear System is Flat. Consider the following system of m linear equations in n unknowns, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$:

$$
\left\{\begin{array}{cc}
\mathbf{a}_{1} \bullet \mathbf{x} & =b_{1} \\
\mathbf{a}_{2} \bullet \mathbf{x} & =b_{2} \\
\vdots \\
\vdots \\
\mathbf{a}_{m} \bullet \mathbf{x} & =b_{m}
\end{array}\right.
$$

If $\mathbf{x}=\mathbf{p}$ and $\mathbf{x}=\mathbf{q}$ are any two points in the solution set, prove that every point of the line $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$ is also in the solution set. [Hint: Assuming that $\mathbf{a}_{i} \bullet \mathbf{p}=b_{i}$ and $\mathbf{a}_{i} \bullet \mathbf{q}=b_{i}$ for all i, you are being asked to show that $\mathbf{a}_{i} \bullet[(1-t) \mathbf{p}+t \mathbf{q}]=b_{i}$ for all i.] Remark: This implies that the solution set is a d-plane in \mathbb{R}^{n} for some d, or it is empty.

Proof. Let $\mathbf{x}=\mathbf{p}$ and $\mathbf{x}=\mathbf{q}$ be points of the solution set. By definition, this means that $\mathbf{a}_{i} \bullet \mathbf{p}=b_{i}$ and $\mathbf{a}_{i} \bullet \mathbf{q}=b_{i}$ for all $i=1, \ldots, m$. Then for all $i=1, \ldots, m$ and for all scalars t we observe that

$$
\mathbf{a}_{i} \bullet[(1-t) \mathbf{p}+t \mathbf{q}]=(1-t) \mathbf{a}_{i} \bullet \mathbf{p}+t \mathbf{a}_{i} \bullet \mathbf{q}=(1-t) b_{i}+t b_{i}=b_{i},
$$

which means that the point $(1-t) \mathbf{p}+t \mathbf{q}$ is also in the solution set.
Bonus Discussion. If two points are in the solution set of a linear system then the whole line that they generate is also in the solution set. Here is a picture:

Problem 5. Orthogonal Complement of a Subspace. A d-dimensional subspace of \mathbb{R}^{n} is just a d-plane in \mathbb{R}^{n} that contains the origin. If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d} \in \mathbb{R}^{n}$ are independent vectors (assume $d \leq n$) then their span is a d-dimensional subspace:

$$
U=\left\{t_{1} \mathbf{u}_{1}+\cdots+t_{d} \mathbf{u}_{d}: t_{1}, \ldots, t_{d} \in \mathbb{R}\right\}
$$

We define the orthogonal complement of this subspace as the set of vectors that are simultaneously perpendicular to every vector in $U \backslash$

$$
U^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{u}_{i} \bullet \mathbf{x}=0 \text { for all } i\right\} .
$$

Explain why U^{\perp} is an $(n-d)$-dimensional subspace of \mathbb{R}^{n}. [Hint: The set U^{\perp} is just the solution set of the linear equations $\mathbf{u}_{i} \bullet \mathbf{x}=0$ for all i. We can express this system as a $d \times(n+1)$ matrix A. Since the rows of A are independent, we know that $\operatorname{RREF}(A)$ will have d pivots. So how many free variables does the system have?]
[Example: If $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{R}^{3}$ are independent vectors in 3-dimensional space, then $U \subseteq \mathbb{R}^{3}$ is the plane that they span and $U^{\perp} \subseteq \mathbb{R}^{3}$ is the line that is perpendicular to this plane, i.e., the line given by the cross product $\mathbf{u}_{1} \times \mathbf{u}_{2}$. Hence we have $\operatorname{dim} U+\operatorname{dim} U^{\perp}=2+1=3$ as expected.]

Proof. By definition, $U^{\perp} \subseteq \mathbb{R}^{n}$ is the solution set of the following linear system:

$$
\left\{\begin{array}{cc}
\mathbf{u}_{1} \bullet \mathbf{x} & =0 \\
\mathbf{u}_{2} \bullet \mathbf{x} & =0 \\
& 0 \\
\mathbf{u}_{d} \bullet \mathbf{x}= & 0
\end{array}\right.
$$

We observe that $\mathbf{x}=\mathbf{0}$ is always a solution, so U^{\perp} is some f-plane passing through the origin and we will prove that $f=n-d$. To do this, we recall that the dimension of the solution set equals the number of free variables in the RREF of the system. (This is why I used the letter f.) Since the row vectors are independent (indeed, we assumed that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d}$ are independent) there will be a pivot in each row of the RREF, hence there will be d pivot variables. Finally, we conclude that the number of free variables is

$$
f=\#(\text { free variables })=n-\#(\text { pivot variables })=n-d .
$$

Remark: I realize that this is very abstract. See the course notes for discussion.

[^0]
[^0]: ${ }^{1}$ Remark: If \mathbf{x} is perpendicular to every basis vector \mathbf{u}_{i}, then it is also perpendicular to every linear combination $t_{1} \mathbf{u}_{1}+\cdots+t_{d} \mathbf{u}_{d}$, hence it is perpendicular to every vector in the subspace U.

