Problem 1. Gaussian Elimination. Solve the following system by converting it to a matrix and then putting the matrix in Reduced Row Echelon Form:

$$
\left\{\begin{array}{l}
x+2 y+3 z=4 \\
x+2 y+4 z=6 \\
x+2 y+5 z=8
\end{array}\right.
$$

Does the solution have the expected number of dimensions? Why or why not?
Problem 2. More Gaussian Elimination. Solve the following system by converting it to a matrix and then putting the matrix in Reduced Row Echelon Form:

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}+00+2 x_{5}=1, \\
x_{1}+2 x_{2}+2 x_{3}+-3 x_{4}+3 x_{5}=1 \\
x_{1}+2 x_{2}+0+3 x_{4}+2 x_{5}=3
\end{array}\right.
$$

Does the solution have the expected number of dimensions? Why or why not?
Problem 3. Column Relations. Put the following matrix in Reduced Row Echelon Form:

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \\
3 & 4 & 6 \\
2 & 3 & 5
\end{array}\right) .
$$

Use your result to find a nontrivial relation among the column vectors:

$$
r\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+s\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right)+t\left(\begin{array}{l}
4 \\
6 \\
5
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

for some $r, s, t \in \mathbb{R}$ that are not all zero. [Hint: Relations among columns are not changed by row operations, so it is easier to find a relation among the columns of $\operatorname{RREF}(A)$.]

Problem 4. The Solution Set of a Linear System is Flat. Consider the following system of m linear equations in n unknowns, where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$:

$$
\left\{\begin{array}{c}
\mathbf{a}_{1} \bullet \mathbf{x}=b_{1}, \\
\mathbf{a}_{2} \bullet \mathbf{x}=b_{2} \\
\vdots \\
\mathbf{a}_{m} \bullet \mathbf{x}=b_{m} .
\end{array}\right.
$$

If $\mathbf{x}=\mathbf{p}$ and $\mathbf{x}=\mathbf{q}$ are any two points in the solution set, prove that every point of the line $\mathbf{x}=(1-t) \mathbf{p}+t \mathbf{q}$ is also in the solution set. [Hint: Assuming that $\mathbf{a}_{i} \bullet \mathbf{p}=b_{i}$ and $\mathbf{a}_{i} \bullet \mathbf{q}=b_{i}$ for all i, you are being asked to show that $\mathbf{a}_{i} \bullet[(1-t) \mathbf{p}+t \mathbf{q}]=b_{i}$ for all i.] Remark: This implies that the solution set is a d-plane in \mathbb{R}^{n} for some d, or it is empty.

Problem 5. Orthogonal Complement of a Subspace. A d-dimensional subspace of \mathbb{R}^{n} is just a d-plane in \mathbb{R}^{n} that contains the origin. If $\mathbf{u}_{1}, \ldots, \mathbf{u}_{d} \in \mathbb{R}^{n}$ are independent vectors (assume $d \leq n$) then their span is a d-dimensional subspace:

$$
U=\left\{t_{1} \mathbf{u}_{1}+\cdots+t_{d} \mathbf{u}_{d}: t_{1}, \ldots, t_{d} \in \mathbb{R}\right\} .
$$

We define the orthogonal complement of this subspace as the set of vectors that are simultaneously perpendicular to every vector in U 1

$$
U^{\perp}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{u}_{i} \bullet \mathbf{x}=0 \text { for all } i\right\} .
$$

Explain why U^{\perp} is an $(n-d)$-dimensional subspace of \mathbb{R}^{n}. [Hint: The set U^{\perp} is just the solution set of the linear equations $\mathbf{u}_{i} \bullet \mathbf{x}=0$ for all i. We can express this system as a $d \times(n+1)$ matrix A. Since the rows of A are independent, we know that $\operatorname{RREF}(A)$ will have d pivots. So how many free variables does the system have?]

Example: If $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{R}^{3}$ are independent, then $U \subseteq \mathbb{R}^{3}$ is the plane that they span and $U^{\perp} \subseteq \mathbb{R}^{3}$ is the line that is spanned by the cross product vector $\mathbf{u}_{1} \times \mathbf{u}_{2}$. Hence we have $\operatorname{dim} U+\operatorname{dim} U^{\perp}=2+1=3$ as expected.

[^0]
[^0]: ${ }^{1}$ Remark: If \mathbf{x} is perpendicular to each \mathbf{u}_{i}, then it is also perpendicular to the linear combination $t_{1} \mathbf{u}_{1}+$ $\cdots+t_{d} \mathbf{u}_{d}$, hence it is perpendicular to every vector in U.

