Problem 1. Planes in Space. (Answers are not unique.)
(a) Express the plane $\mathbf{x}=(0,0,1)+s(1,1,1)+t(1,2,3)$ in the form $a x+b y+c z=d$.
(b) Express the plane $x+2 y+4 z=6$ in the form $\mathbf{x}=\mathbf{p}+s \mathbf{u}+t \mathbf{v}$.
(a): We want to find an equation of the form $\mathbf{a} \bullet \mathbf{x}=d$, or $\mathbf{a} \bullet \mathbf{x}=\mathbf{a} \bullet \mathbf{p}$. Recall that this is a plane that perpendicular to the "normal vector" a and contains the point \mathbf{p}. We already have a point \mathbf{p}, thus we only need to find a normal vector \mathbf{a}. The quickest way to do this is to take the cross product of the two direction vectors $\mathbf{u}=(1,1,1)$ and $\mathbf{v}=(1,2,3)$:

$$
\mathbf{a}=\mathbf{u} \times \mathbf{v}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \times\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

Thus the equation is

$$
\begin{aligned}
\mathbf{a} \bullet \mathbf{x} & =\mathbf{a} \bullet \mathbf{p} \\
(1,-2,1) \bullet(x, y, z) & =(1,-2,1) \bullet(0,0,1) \\
x-2 y+z & =1
\end{aligned}
$$

Here is a picture:

(b): To express the plane in the form $\mathbf{x}=\mathbf{p}+s \mathbf{u}+t \mathbf{v}$ we need to solve for x, y, z in terms of two parameters s and t. The easiest way to do this is to take $s=y$ and $t=z$. Then since $x+2 y+4 z=6$ we must have $x=6-2 y-4 z=6-2 s-4 t$, and hence

$$
(x, y, z)=(6-2 s-4 t, s, t)=(6,0,0)+s(-2,1,0)+t(-4,0,1)
$$

We conclude that $\mathbf{p}=(6,0,0)$ is a point on the plane, while $\mathbf{u}=(-2,1,0)$ and $\mathbf{v}=(-4,0,1)$ are two direction vectors for the plane. Here is a picture:

Problem 2. Perpendicular and Parallel Lines. Consider two lines in the plane:

$$
a x+b y=c \quad \text { and } \quad a^{\prime} x+b^{\prime} y=c^{\prime} .
$$

(a) Find an equation involving $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ to determine when the lines are perpendicular. [Hint: Recall that two vectors $\mathbf{u}=(u, v)$ and $\mathbf{u}^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ are perpendicular if and only if $\mathbf{u} \bullet \mathbf{u}=u u^{\prime}+v v^{\prime}=0$.]
(b) Find an equation involving $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ to determine when the lines are parallel. [Hint: Recall that two vectors $\mathbf{u}=(u, v)$ and $\mathbf{u}^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ are parallel if and only if $\mathbf{u}^{\prime}=t \mathbf{u}$ for some nonzero constant t.]

Remark: The two lines are perpendicular to the vectors $\mathbf{a}=(a, b)$ and $\mathbf{a}^{\prime}=\left(a^{\prime}, b^{\prime}\right)$. Thus the lines are perpendicular/parallel if and only the vectors are perpendicular/parallel. The constants c and c^{\prime} are irrelevant because they do not affect the slope of the lines. Picture:

(a): The lines are perpendicular when the normal vectors are perpendicular:

$$
\begin{aligned}
\mathbf{a} \bullet \mathbf{a}^{\prime} & =0 \\
(a, b) \bullet\left(a^{\prime}, b^{\prime}\right) & =0 \\
a a^{\prime}+b b^{\prime} & =0 .
\end{aligned}
$$

Alternatively, the lines have slope $-a / b$ and $-a^{\prime} / b^{\prime}$ (assuming $b, b^{\prime} \neq 0$). Hence they are perpendicular when they have "negative reciprocal slope":

$$
\begin{aligned}
-a / b & =b^{\prime} / a^{\prime} \\
-a a^{\prime} & =b b^{\prime} \\
a a^{\prime}+b b & =0 .
\end{aligned}
$$

(b): The lines are parallel when the normal vectors are parallel:

$$
\begin{aligned}
\mathbf{a} & =t \mathbf{a}^{\prime} \\
(a, b) & =\left(t a^{\prime}, t b^{\prime}\right),
\end{aligned}
$$

which implies $a=t a^{\prime}$ and $b=t b^{\prime}$ for some t, hence $a / a^{\prime}=t=b / b^{\prime}$. Then we can eliminate t :

$$
\begin{aligned}
a / a^{\prime} & =b / b^{\prime} \\
a b^{\prime} & =a^{\prime} b \\
a b^{\prime}-a^{\prime} b & =0 .
\end{aligned}
$$

Alternatively, the lines are parallel when the slopes are equal:

$$
\begin{aligned}
-a / b & =-a^{\prime} / b^{\prime} \\
-a b^{\prime} & =-a^{\prime} b \\
a b^{\prime}-a^{\prime} b & =0 .
\end{aligned}
$$

See the course notes for a discussion of how this relates to the determinant.

Problem 3. Intersection of Two Lines. Consider the following system of two linear equations in the two unknowns x and y (where c is a constant):

$$
\left\{\begin{array}{c}
x+3 y=6 \\
2 x+c y=0
\end{array}\right.
$$

(a) Solve for x and y in the case $c=-3$. Draw a picture of your solution.
(b) For which value of c does the system have no solution? Draw a picture in this case.
(a): Let $c=-3$ and consider the system

$$
\text { (1) }\left\{\begin{aligned}
x+3 y & =6, \\
2 x-3 y & =0 .
\end{aligned}\right.
$$

Add these to obtain another true equation

$$
\text { (3) : } 3 x+0 y=6 \text {. }
$$

This implies that $x=2$ and then substituting $x=2$ into either (1) or (2) gives $y=4 / 3$. In other words, the two lines meet at the point $(2,4 / 3)$. Picture:

(b): Now consider the general system:
(1) $\left\{\begin{array}{c}x+3 y=6, ~ \\ 2 x+c y=0, ~\end{array}\right.$
(2) $\{2 x+c y=0$.

If (1) and (2) are true, then the equation $(3)=2(1)-(2)$ is also true:

$$
(3): 0 x+(6-c) y=12 \text {. }
$$

But this equation has no solution when $c=6$, in which case the original system has no solution. Geometrically, this means that the two lines are parallel. Picture:

Remark: Changing the value of c just "rotates" the blue line (2). When $c=6$ the blue line (2) becomes parallel to the red line (1).

Problem 4. Intersection of Two Planes (Cross Product). For any two vectors $\mathbf{u}=$ (u, v, w) and $\mathbf{u}^{\prime}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ in \mathbb{R}^{3} we define the cross product as follows:

$$
\mathbf{u} \times \mathbf{u}^{\prime}=\left(v w^{\prime}-v^{\prime} w, u^{\prime} w-u w^{\prime}, u v^{\prime}-u^{\prime} v\right) \in \mathbb{R}^{3} .
$$

(a) Use algebra to verify the identities $\mathbf{u} \bullet\left(\mathbf{u} \times \mathbf{u}^{\prime}\right)=0$ and $\mathbf{u}^{\prime} \bullet\left(\mathbf{u} \times \mathbf{u}^{\prime}\right)=0$. It follows that the vector $\mathbf{u} \times \mathbf{u}^{\prime}$ is simultaneously perpendicular to \mathbf{u} and \mathbf{u}^{\prime}.
(b) Use the cross product to solve the following system of linear equations:

$$
\left\{\begin{array}{c}
x+y+2 z=0 \\
3 x+4 y+5 z=0
\end{array}\right.
$$

[Hint: The solution is a line $(x, y, z)=t(u, v, w)$ where the vector (u, v, w) is parallel to both planes, i.e., is simultaneously perpendicular to $(1,1,2)$ and $(3,4,5)$.]
(a): Let $\mathbf{a}=\mathbf{u} \times \mathbf{u}^{\prime}$. We want to check that (1) $\mathbf{u} \bullet \mathbf{a}=0$ and (2) $\mathbf{u}^{\prime} \bullet \mathbf{a}=0$. For (1) we have

$$
\begin{aligned}
\mathbf{u} \bullet \mathbf{a} & =u\left(v w^{\prime}-v^{\prime} w\right)+v\left(u^{\prime} w-u w^{\prime}\right)+w\left(u v^{\prime}-u^{\prime} v\right) \\
& =u v w^{\prime}-u v^{\prime} w+u^{\prime} v w-u v w^{\prime}+u v^{\prime} w-u^{\prime} v w \\
& =0,
\end{aligned}
$$

and for (2) we have

$$
\begin{aligned}
\mathbf{u}^{\prime} \bullet \mathbf{a} & =u^{\prime}\left(v w^{\prime}-v^{\prime} w\right)+v^{\prime}\left(u^{\prime} w-u w^{\prime}\right)+w^{\prime}\left(u v^{\prime}-u^{\prime} v\right) \\
& =u^{\prime} v w^{\prime}-u^{\prime} v^{\prime} w+u^{\prime} v^{\prime} w-u v^{\prime} w^{\prime}+u v^{\prime} w^{\prime}-u^{\prime} v w^{\prime} \\
& =0 .
\end{aligned}
$$

See the lecture notes for discussion of how this relates to the determinant.
(b): Consider the system:

$$
\text { (1) }\left\{\begin{array}{c}
x+y+2 z=0, \\
3 x+4 y+5 z=0 .
\end{array}\right.
$$

We can rewrite these equations in terms of the dot product:

$$
\begin{aligned}
& (1) \\
& (2)
\end{aligned}\left\{\begin{array}{l}
(1,1,2) \bullet(x, y, z)=0, \\
(3,4,5) \bullet(x, y, z)=0 .
\end{array}\right.
$$

Thus we are looking for a vector $\mathbf{x}=(x, y, z)$ that is simultaneously perpendicular to $\mathbf{u}=$ $(1,1,2)$ and $\mathbf{u}^{\prime}=(3,4,5)$. From part (a) we see that the answer is given by the cross product:

$$
\mathbf{x}=\mathbf{u} \times \mathbf{u}^{\prime}=(1,1,2) \times(3,4,5)=(-3,1,1) .
$$

But this is just one point of the solution. The full solution is the whole line:

$$
(x, y, z)=t(-3,1,1)=(-3 t, t, t)
$$

Picture:

Problem 5. Intersection of Three Planes. Consider the following system of 3 linear equations in the 3 unknowns x, y, z (where c is a constant):

$$
\left\{\begin{array}{c}
x+y+2 z=0 \\
3 x+4 y+5 z=0 \\
x+2 y+c z=-2
\end{array}\right.
$$

(a) Solve for x, y, z when $c=4$. In this case the three planes intersect at a unique point. [Hint: The intersection of the first two planes is the line $(x, y, z)=t(u, v, w)$ from 2(b). Substitute this into the third plane and solve for t.]
(b) For which value of c does the system have no solution? In this case the third plane is parallel to - and does not contain - the line of intersection of the first two planes. [Hint: Try to solve as in part (a). Look for a value of c that makes this impossible.]
(a): Consider the system:

$$
\begin{aligned}
& \text { (1) } \\
& (2) \\
& (3)
\end{aligned}\left\{\begin{array}{c}
x+y+2 z=0, \\
3 x+4 y+5 z=0, \\
x+2 y+4 z=-2 .
\end{array}\right.
$$

From Problem 4(a) we know that planes (1) and (2) meet at the line $(x, y, z)=(-3 t, t, t)$. Substituting this into plane (3) gives

$$
\begin{aligned}
x+2 y+4 z & =-2 \\
(-3 t)+2(t)+4(t) & =-2 \\
3 t & =-2 \\
t & =-2 / 3 .
\end{aligned}
$$

We conclude that the planes (1),(2),(3) intersect at a unique point:

$$
(x, y, z)=(-3 t, t, t)=(2,-2 / 3,-2 / 3) .
$$

(b): If we change the third plane to (3): $x+2 y+c z=-2$ for a general value of c, then the intersection of the line (1),(2) and the plane (3) is given by

$$
\begin{aligned}
x+2 y+c z & =-2 \\
(-3 t)+2(t)+c(t) & =-2 \\
(c-1) t & =-2 .
\end{aligned}
$$

If $c=1$ then this equation has no solution, meaning that the line $(x, y, z)=(-3 t, t, t)$ is parallel to the plane (3): $x+2 y+z=-2$. Then since no two of the planes (1),(2),(3) are parallel, we must have the following picture:

Remark: Changing the value of c just "rotates" the green plane (3). When $c=1$ it becomes parallel to (and does not contain) the line of intersection of (1) and (2).

