Problem 1. Coordinate Systems.

- (a) Draw the 9 points (x, y) where $x, y \in \{0, 1, 2\}$. Draw the lines y = -x+1 and y = 2x-2. Shade the region where $1 \le x \le 2$ and $0 \le y \le 2$.
- (b) Now let $\mathbf{u} = (3,1)$ and $\mathbf{v} = (-1,2)$. Draw the 9 points $x\mathbf{u} + y\mathbf{v}$ where $x, y \in \{0,1,2\}$. Draw the lines $\{x\mathbf{u} + y\mathbf{v} : y = -x + 1\}$ and $\{x\mathbf{u} + y\mathbf{v} : y = 2x - 2\}$. Shade the region $\{x\mathbf{u} + y\mathbf{v} : 0 \le x \le 1 \text{ and } 0 \le y \le 2\}$.

Problem 2. Midpoints. Consider the same points $\mathbf{u} = (3, 1)$ and $\mathbf{v} = (-1, 2)$.

- (a) Draw the lines $t\mathbf{u} + (1-t)\mathbf{v}$ and $s(\mathbf{u} + \mathbf{v})$. Show that $(\mathbf{u} + \mathbf{v})/2$ is the intersection point of these lines. Explain the geometric meaning.
- (b) Now consider $\mathbf{w} = (2, 4)$. Draw the points $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Also draw the point $(\mathbf{u} + \mathbf{v} + \mathbf{w})/3$ and explain its geometric meaning.

Problem 3. The Angle Between Vectors. The general Pythagorean Theorem tells us that for any vectors \mathbf{u}, \mathbf{v} in any number of dimensions we have $\mathbf{u} \bullet \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} measured tail-to-tail.

- (a) Compute the angle between $\mathbf{u} = (3, 1)$ and $\mathbf{v} = (-1, 2)$.
- (b) Now let \mathbf{u} and \mathbf{v} be any two vectors in 10 dimensional space satisfying $\mathbf{u} \bullet \mathbf{u} = 10$, $\mathbf{v} \bullet \mathbf{v} = 5$ and $\mathbf{u} \bullet \mathbf{v} = -1$. Compute the angle between \mathbf{u} and \mathbf{v} .
- (c) Now let \mathbf{x} and \mathbf{y} be any two vectors in 100 dimensional space satisfying $\mathbf{x} \bullet \mathbf{x} = \mathbf{y} \bullet \mathbf{y} = 1$ and $\mathbf{x} \bullet \mathbf{y} = 0$. Compute the angle between $\mathbf{u} = 3\mathbf{x} + \mathbf{y}$ and $\mathbf{v} = -\mathbf{x} + 2\mathbf{y}$.

Problem 4. A Line in the Plane. Let $\mathbf{u} = (3, 1)$ and $\mathbf{v} = (-1, 2)$.

- (a) Find the Cartesian equation of the line $t\mathbf{u} + (1-t)\mathbf{v}$, i.e., in terms of x and y.
- (b) Express this equation in the form $\mathbf{a} \bullet (x, y) = c$ for some vector \mathbf{a} and some constant c.

Problem 5. Parallel Lines. If a, b, c are constant then the equation ax + by = c represents a line in the plane. This equation can also be expressed as

$$\mathbf{a} \bullet \mathbf{x} = c_{\mathbf{x}}$$

where $\mathbf{a} = (a, b)$ and $\mathbf{x} = (x, y)$.

- (a) Draw the 5 lines $\mathbf{a} \bullet \mathbf{x} = c$ where $\mathbf{a} = (1, 2)$ and $c \in \{-2, -1, 0, 1, 2\}$.
- (b) Now let $\mathbf{a} = (a, b)$ be an arbitrary nonzero vector in the plane and let c be an arbitrary constant. Prove that the line $\mathbf{a} \bullet \mathbf{x} = c$ is perpendicular to the line $t\mathbf{a}$. [Hint: For any two points \mathbf{x}_1 and \mathbf{x}_2 on the first line, show that the vector $\mathbf{x}_1 \mathbf{x}_2$ is perpendicular to the vector $t\mathbf{a}$ for any t, i.e., that $(t\mathbf{a}) \bullet (\mathbf{x}_1 \mathbf{x}_2) = 0$.]

It follows that any two lines of the form $\mathbf{a} \bullet \mathbf{x} = c_1$ and $\mathbf{a} \bullet \mathbf{x} = c_2$ are **parallel** (i.e., because they are both perpendicular to the line $t\mathbf{a}$).