Problem 1. Coordinate Systems.

(a) Draw the 9 points (x, y) where $x, y \in\{0,1,2\}$. Draw the lines $y=-x+1$ and $y=2 x-2$. Shade the region where $1 \leq x \leq 2$ and $0 \leq y \leq 2$.
(b) Now let $\mathbf{u}=(3,1)$ and $\mathbf{v}=(-1,2)$. Draw the 9 points $x \mathbf{u}+y \mathbf{v}$ where $x, y \in\{0,1,2\}$. Draw the lines $\{x \mathbf{u}+y \mathbf{v}: y=-x+1\}$ and $\{x \mathbf{u}+y \mathbf{v}: y=2 x-2\}$. Shade the region $\{x \mathbf{u}+y \mathbf{v}: 0 \leq x \leq 1$ and $0 \leq y \leq 2\}$.

Problem 2. Midpoints. Consider the same points $\mathbf{u}=(3,1)$ and $\mathbf{v}=(-1,2)$.
(a) Draw the lines $t \mathbf{u}+(1-t) \mathbf{v}$ and $s(\mathbf{u}+\mathbf{v})$. Show that $(\mathbf{u}+\mathbf{v}) / 2$ is the intersection point of these lines. Explain the geometric meaning.
(b) Now consider $\mathbf{w}=(2,4)$. Draw the points $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Also draw the point $(\mathbf{u}+\mathbf{v}+\mathbf{w}) / 3$ and explain its geometric meaning.

Problem 3. The Angle Between Vectors. The general Pythagorean Theorem tells us that for any vectors \mathbf{u}, \mathbf{v} in any number of dimensions we have $\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, where θ is the angle between \mathbf{u} and \mathbf{v} measured tail-to-tail.
(a) Compute the angle between $\mathbf{u}=(3,1)$ and $\mathbf{v}=(-1,2)$.
(b) Now let \mathbf{u} and \mathbf{v} be any two vectors in 10 dimensional space satisfying $\mathbf{u} \bullet \mathbf{u}=10$, $\mathbf{v} \bullet \mathbf{v}=5$ and $\mathbf{u} \bullet \mathbf{v}=-1$. Compute the angle between \mathbf{u} and \mathbf{v}.
(c) Now let \mathbf{x} and \mathbf{y} be any two vectors in 100 dimensional space satisfying $\mathbf{x} \bullet \mathbf{x}=\mathbf{y} \bullet \mathbf{y}=1$ and $\mathbf{x} \bullet \mathbf{y}=0$. Compute the angle between $\mathbf{u}=3 \mathbf{x}+\mathbf{y}$ and $\mathbf{v}=-\mathbf{x}+2 \mathbf{y}$.

Problem 4. A Line in the Plane. Let $\mathbf{u}=(3,1)$ and $\mathbf{v}=(-1,2)$.
(a) Find the Cartesian equation of the line $t \mathbf{u}+(1-t) \mathbf{v}$, i.e., in terms of x and y.
(b) Express this equation in the form $\mathbf{a} \bullet(x, y)=c$ for some vector a and some constant c.

Problem 5. Parallel Lines. If a, b, c are constant then the equation $a x+b y=c$ represents a line in the plane. This equation can also be expressed as

$$
\mathbf{a} \bullet \mathbf{x}=c,
$$

where $\mathbf{a}=(a, b)$ and $\mathbf{x}=(x, y)$.
(a) Draw the 5 lines $\mathbf{a} \bullet \mathbf{x}=c$ where $\mathbf{a}=(1,2)$ and $c \in\{-2,-1,0,1,2\}$.
(b) Now let $\mathbf{a}=(a, b)$ be an arbitrary nonzero vector in the plane and let c be an arbitrary constant. Prove that the line $\mathbf{a} \bullet \mathbf{x}=c$ is perpendicular to the line $t \mathbf{a}$. [Hint: For any two points \mathbf{x}_{1} and \mathbf{x}_{2} on the first line, show that the vector $\mathbf{x}_{1}-\mathbf{x}_{2}$ is perpendicular to the vector $t \mathbf{a}$ for any t, i.e., that $(t \mathbf{a}) \bullet\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=0$.]
It follows that any two lines of the form $\mathbf{a} \bullet \mathbf{x}=c_{1}$ and $\mathbf{a} \bullet \mathbf{x}=c_{2}$ are parallel (i.e., because they are both perpendicular to the line $t \mathbf{a})$.

