HW6 Notes

We have finished discussing "least squares regression", which is one of the most common applications of Linear Algebra.

There is one more application of Linear Algebra I want to discuss before sending you out into the world. I'll call it "spectral analysis"

and I'll also introduce this topic with on example.

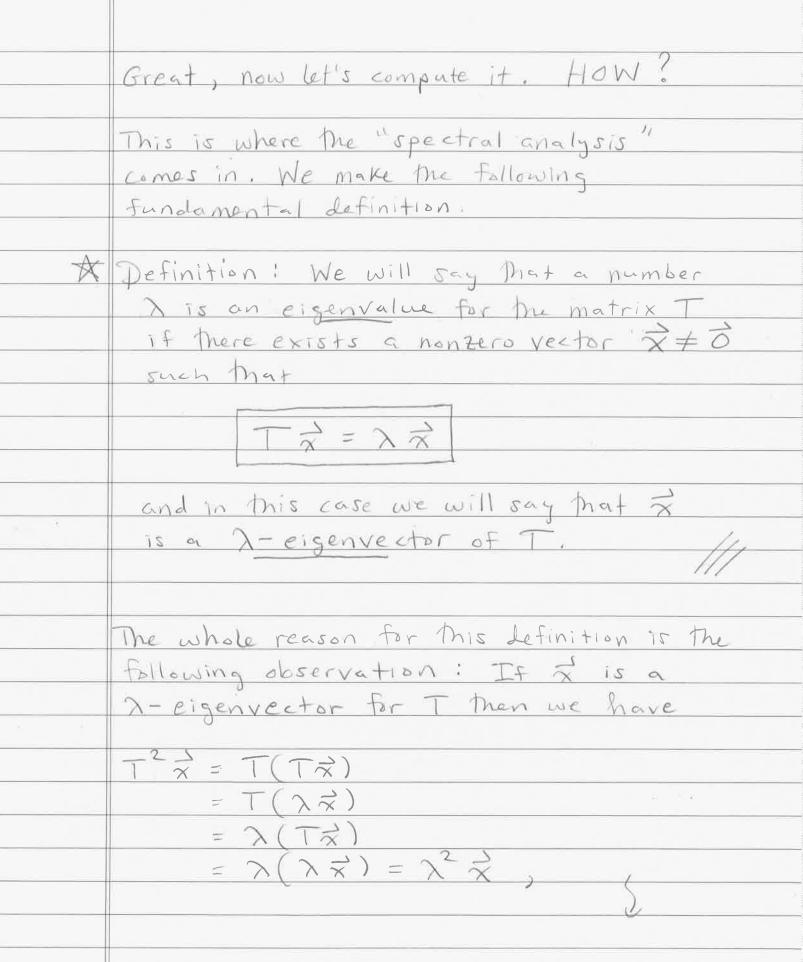
Motivating Example: You may have heard of the "Fibonacci Sequence" 1,1,2,3,5,8,13,21,34,55, etc. If we write In for the nth Fibonacci number then the sequence is defined by The "initial conditions" f = 0 & f = 1 and the "recurrence equation" fn+2 = fn+1 + fn for all n30. For example, we have $f_2 = f_1 + f_0 = 1 + 0 = 1$ $f_3 = f_2 + f_1 = 1 + 1 = 2$ $f_4 = f_3 + f_2 = 2 + 1 = 3$ fo = fy + f3 = 3+2 = 5, etc. Our goal today is to find a "closed formula for the nth Fibonacci number: fn = ?

The answer is very hard to guess, but we can compute it rather easily using a trick and some Linear Algebra. The trick is to rewrite the recurrence equation as a system of two linear equations

$$\int f_{n+2} = f_{n+1} + f_n$$

$$\int f_{n+1} = f_{n+1}$$

The second equation looks quite useless but it's not because it allows us to express the recurrence as a matrix equation


$$\begin{pmatrix}
f_{n+2} \\
f_{n+1}
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
f_{n+1} \\
f_{n}
\end{pmatrix}$$

To save some space we will introduce the notations

$$\frac{1}{f_n} = \begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} & \mathcal{L} \quad T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},$$

Then we can express the initial conditions and the recurrence as follows: of=(1) · for all n>0. Now we're ready to apply Linear Algebra. By computing the first few vectors fin, $\overline{f}_1 = \overline{f}_0$ $f_2 = Tf_1 = T(Tf_0) = (TT)f_0 = T^2f_0$ $\vec{f}_{0} = T\vec{f}_{1} = T(T^{2}\vec{f}_{1}) = (TT^{2})\vec{f}_{0} = T^{3}\vec{f}_{0}$ we see that the nth vector is given by $\overline{f}_n = T^n \overline{f}_n$ $\left(\frac{f_{n+1}}{f_n}\right) = \left(\frac{1}{1}\frac{1}{0}\right)\left(\frac{1}{0}\right),$ and we really only care about The 2nd entry of this vector, which is

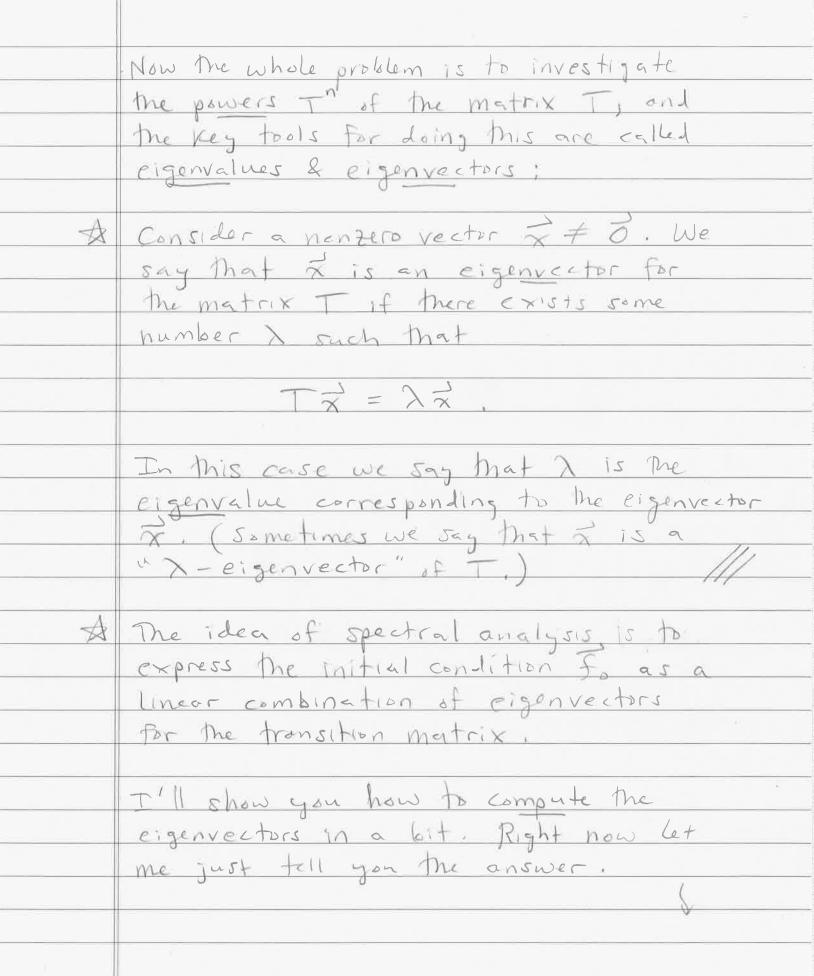
the nth Fibonacci number In.

The state of the form
$$\lambda(0)$$
.

But that's okay, Here's the kig idea.

The we can express the Initial condition to the form $\lambda(0)$.

The we can express the Initial condition to the form $\lambda(0)$.


The can express the initial condition to the form $\lambda(0)$ to the f

Indeed, suppose that it & i are eigenvectors For T with Tは= 入立 & Tジ= ロジ, for some eigenvalues 2 & m and suppose that we can write F = au + 6 7 for some numbers a & b. Then we will have Trf = Tr (au+bv) = a(Tnは)+b(Tn) = a 2 " は + 6 m" マ and the problem will be solved! Thus we have reduced the problem to: · findining enough eigenvectors for T · expressing the initial condition for in terms of them.

...continued

Right new I am introducing the idea of "spectral analysis" through a motivational example. Recall The Fibonacci numbers 0,1,1,2,3,5,8,13,21,34,55,---These are defined by initial conditions $f_0 = 0 & f_1 = 1$ and by the recurrence equation Fn+2 = fn+1 + fn for n > 0

Our goal is to "solve" this recurrence, i.e., to find a "closed formula" for the nth Fibonacci number. The answer is very hard to guess so it is preferable to develop a mechanical technique. To do this we will define the vectors $f_n := \left(\begin{array}{c} f_{n+1} \\ f_n \end{array}\right)$ consisting of two consecutive Fibonacci numbers and then observe that the initial conditions and recurrence can be rewritten in terms of matrix algebra as $\vec{f}_{0} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \vec{f}_{n+1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \vec{f}_{0} & \vec{f}_{0} = \vec{h}_{0} & \vec{h}_$ If we define T: (10) Then we can solve explicitly for Fr $\frac{1}{5}n = -n = \frac{1}{5}$

If we define the numbers

$$\varphi_1 = \frac{1+\sqrt{5}}{2} \quad & \varphi_2 = \frac{1+\sqrt{5}}{2}$$
then I claim [just believe me] that.

$$\begin{pmatrix}
1 & 1 & \\
1 & 0 & \\
1 & 1
\end{pmatrix} = \varphi_1 \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 \\ 1 & 0
\end{pmatrix} = \varphi_2 \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 \\ 1 & 0
\end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$
And then the answer to our problem is immediate. We have
$$\begin{pmatrix}
5_{n+1} \\ 5_n
\end{pmatrix} = \vec{F}_n = T^n \vec{F}_0$$

$$= T^n \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{5}} T^n \begin{pmatrix} \varphi_2 \\ 1 \end{pmatrix}$$

$$f_n = \frac{1}{\sqrt{5}} q_1^n - \frac{1}{\sqrt{5}} q_2^n$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n} \left(\frac{1}{2} \right)$$

I consider this formula pretty amazing because it doesn't even look like a whole number. Let's check a comple of cases:

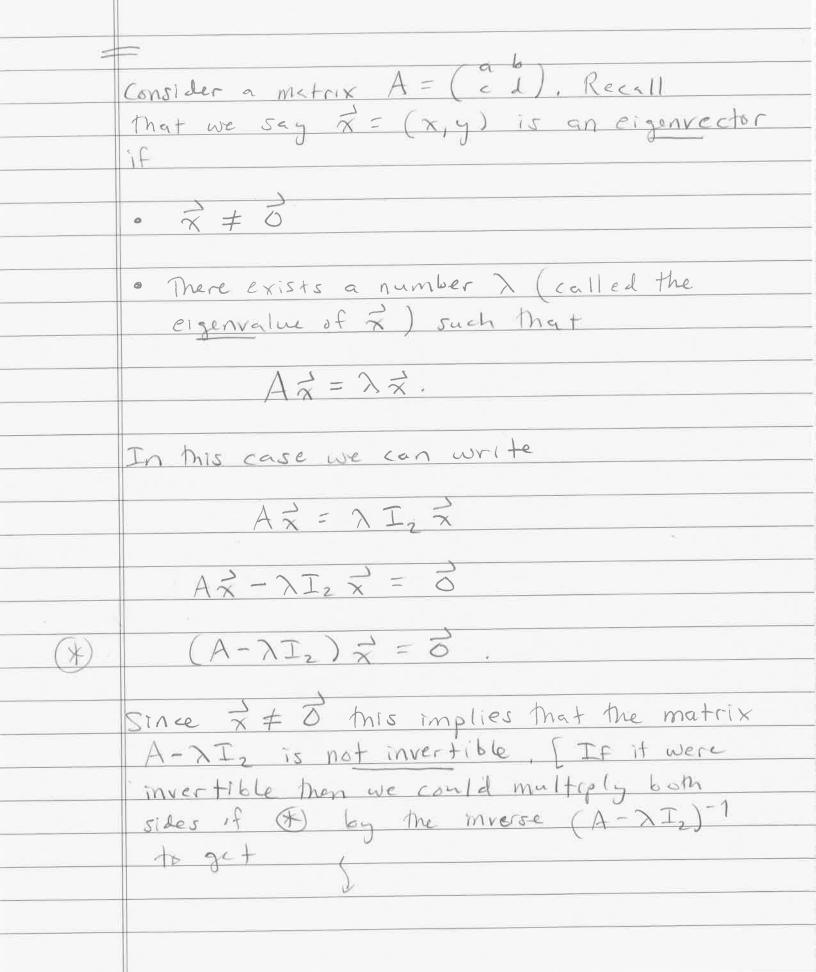
$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{\circ}$$

$$= \frac{1}{\sqrt{5}} \cdot \frac{1-\sqrt{5}}{\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt$$

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{2}$$

$$=\frac{1}{2\sqrt{5}}\left[(\chi+\sqrt{5})-(\chi-\sqrt{5})\right]$$

$$=\frac{1}{2\sqrt{5}}\left[2\sqrt{5}\right]=1=f_{1}$$


OK, that's good enough for me What remains to do? I need to show you how to compute the eigenvalues & eigenvectors of a matrix if you don't know them already. Actually, this is pretty hard in general so I'll just show you how to do it for 2x2 matrices. So let A = (ab) and suppose that

A is eigenvalue of A. This means that

there exists a vector \$\frac{1}{2} \neq \text{S such that} A= >= $A\overrightarrow{x} = \lambda I_2 \overrightarrow{x}$ $A\overrightarrow{x} - \lambda I_2 \overrightarrow{x} = \overrightarrow{o}$ $(A-\lambda I_2) \stackrel{?}{\times} = \stackrel{?}{\circ}$ Since x = 0 this equation tells me that the metrix A-XI2 has a non-trivial column relation, so it is not invertible.

If A- > Iz were invertible then its inverse would be given by the formula $(A-\lambda I_2)^{-1} = \begin{bmatrix} a & b \\ -\lambda & 0 \end{bmatrix}$ $= \begin{pmatrix} a - \lambda & b & 1 - 1 \\ c & d - \lambda \end{pmatrix}$ $= \frac{1}{(a-\lambda)(d-\lambda)-bc} \left(\frac{d-\lambda}{-c} - \frac{b}{a-\lambda} \right).$ But since we know that A- XI2 is not invertible, it must be the case that $(a-\lambda)(d-\lambda)-bc=0$ $ad-a\lambda-d\lambda+\lambda^2-bc=0$ $\chi^2 - (a+d)\chi + (ad-bc) = 0$ This is called the characteristic equation of the matrix A, Its solutions & are precisely the eigenvalues of A, and we can compute them using the quadratic formula:

= (a+d) = (a+d)2-4(ad-bc) After finding the eigenvalues from Dit is easy to find the corresponding eigenvectors by solving the linear system $(A - \lambda I_2) = \vec{\sigma}$ for each eigenvalue).

which is a contradiction. I since
$$A - \lambda I_2$$
 is not invertible we know that its determinant is zero,

$$O = \det (A - \lambda I_2)$$

$$= \det (ab) - (\lambda O)$$

$$= \det (a - \lambda I_2)$$

$$= \det (a - \lambda I$$

Application: Consider a certain population of bears. Let In denote the number of bears inside Florida at year N and let gr denote the number of bears outside Florida. Suppose that the bears migrate according to the following pattern $f_{n+1} = 0.4 f_n + 0.2 g_n$ $g_{n+1} = 0.6 f_n + 0.8 g_n$ $\begin{pmatrix} f_{n+1} \end{pmatrix} = \begin{pmatrix} 0.4 & 0.2 \\ 0.6 & 0.8 \end{pmatrix} \begin{pmatrix} f_n \\ g_n \end{pmatrix}$ we can also express this information with a transition diagram 60% 40% In Florida NOT 80% Among the bears in Florida, 40% will stay in Florida next year and 60%. will leave. Among the bears not in Florida,

20 /o will come to Florida next year and 80% will stay away. [This is a very simple Model because it assumes that no bears are born or die Our goal is to investigate the long term behavior of the bears: $\binom{4n}{9n} \rightarrow ? as n \rightarrow \infty$. To do this we will compute the eigenvalues I eigenvectors of the transition matrix $T = (0.4 \ 0.2)$ The characteristic equation is (0.4-x)(0.8-x) - (0.2)(0.6) = 0. $\chi^2 - (1.2)\chi + (0.4)(0.8) - (0.2)(0.6) = 0.$ $\chi^2 - 1.2 \chi + 0.32 - 0.12 = 0$ $\chi^2 - 1.2 \chi + 0.2 = 0$

$$10 \lambda^2 = 12 \lambda + 2 = 0$$
.

So the eigenvalues are

$$\lambda = (12 \pm \sqrt{144 - 80}) / 20$$

$$=(12\pm 8)/20$$

Now let's compute the eigenvectors. For eigenvalue 7 = 1 we have

$$(T-1I_2)_{\vec{\lambda}} = \vec{o} \rightarrow \begin{pmatrix} 0.4-1 & 0.2 \\ 0.6 & 0.8-1 \end{pmatrix}_{\vec{\lambda}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Let y be free. Then we have

$$\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/3 \\ y \end{pmatrix} = y \begin{pmatrix} 1/3 \\ 1 \end{pmatrix}.$$

or, letting $t = \frac{1}{3}y$ gives

$$\vec{x} = t \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

These are the eigenvectors with eigenvalue 1.

For eigenvalue $\lambda = 0.2$ we have

$$(T - 0.2 T_1) \vec{x} = \vec{0} \rightarrow \begin{pmatrix} 0.4 - 0.2 & 0.2 \\ 0.6 & 0.8 - 0.2 \end{pmatrix} \vec{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 0.2 & 0.2 & | 0 \\ 0.6 & 0.6 & | 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | 0 \\ 0 & 0 & | 0 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 0.2 & 0.2 & | 0 \\ 0.6 & 0.6 & | 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | 0 \\ 0 & 0 & | 0 \end{pmatrix}$$

Let y be free. Then we have

$$\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

These are the eigenvectors of eigenvalue 0.2. In summary, we have

$$T \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} & 2 & T \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (32) \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

These formulas give us all the information we need to analyze the system.

for example, suppose we start in year zero with 100 bears in Florida and O outside:

$$\begin{pmatrix} \xi_0 \end{pmatrix} = \begin{pmatrix} 100 \\ 0 \end{pmatrix}$$

To express this in terms of eigenvectors
suppose that

$$a\left(\frac{3}{3}\right)+b\left(-1\right)=\left(\frac{1}{0}\right)$$

$$\begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 100 \\ 0 \end{pmatrix}.$$

Then we can solve for a & b:

In other words,

$$f_n = 26 + 75(0.2)^n$$

$$g_n = 75 - 75(0.2)^n$$

And now we can see clearly what happens as $n \to \infty$. Since $(0.2)^n \to 0$ as $n \to \infty$ we have

$$\left(\frac{f_n}{g_n}\right) \rightarrow \left(\frac{25}{75}\right) = as \quad n \rightarrow \infty$$

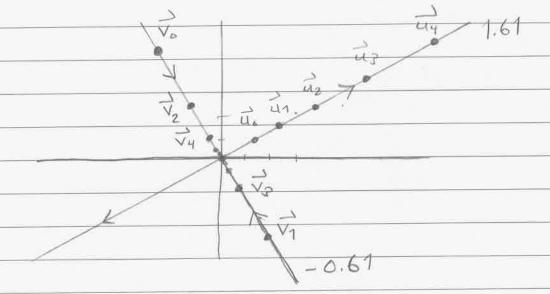
In the long term there will be 25 bears inside Plovida & 75 bears outside.

Conclusion of Fibonacci Example

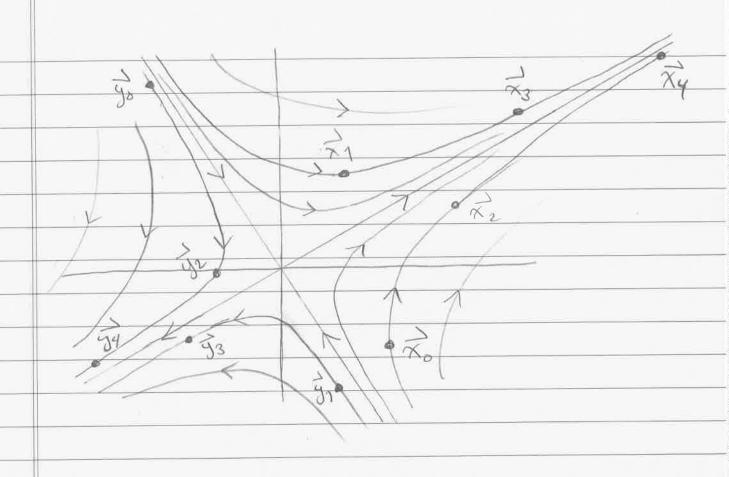
For example, consider the Fibonacci matrix
$T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
We will denote the eigenvalues by
$4_1 = \frac{1+\sqrt{5}}{2}$ & $4_2 = \frac{1-\sqrt{5}}{2}$
≈ 1.61 ≈ -0.61
This one is called
This one is called the "golden ratio"
3

On the HW you computed the eigenvectors

$$T\begin{pmatrix} \Psi_1 \end{pmatrix} = \Psi_1 \begin{pmatrix} \Psi_1 \end{pmatrix} & & T \begin{pmatrix} \Psi_2 \end{pmatrix} = \Psi_2 \begin{pmatrix} \Psi_2 \\ 1 \end{pmatrix}$$


Actually it's more correct to talk about eigendirections or "eigendines" because any scalar multiple of an eigenvector is still an eigenvector with the same cigonvalue. For example, for any number t we have

$$T(t(41)) = tT(41)$$


$$= t \cdot \theta_1(41) = \theta_1(t(41))$$

$$= t \cdot \theta_1(41) = \theta_1(t(41))$$

Here are the two "eigenlines" for the

I have labeled each eigenline by it's eigenvalue. The arrows indicate that one eigenline tends to expand (141/21) while the other tends to contract (142/<1). I have also drawn two sample trajectories for some initial conditions it & to in the eigenlines. That is we define $\vec{a}_n = T \vec{a}_{n-1} \qquad \& \quad \vec{\nabla}_n = T \vec{\nabla}_{n-1} \\ = T^n \vec{a}_n \qquad = T^n \vec{\nabla}_n .$ Note that the points Vo, Vy, - bounce back and forth while converging to 0 because 142 < 1 and 92 < 0. For any other initial condition to the trajectory will be a mixture of these indicate this by drawing " Flow lines" outside of the eigenlines as in The following picture

Now any trajectory will bounce back and forth between two of There flow lines (which have the shape of "hyperbolas"). I've drawn two example trajectories

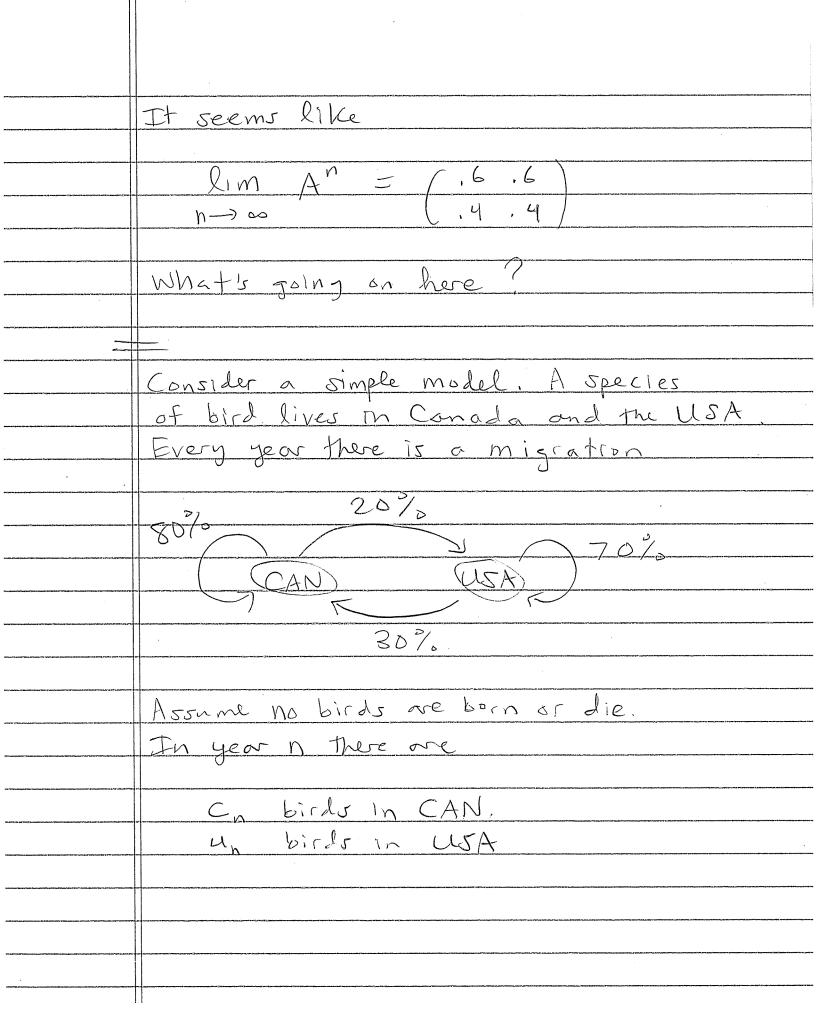
The actual "Fibonacci numbers" are just the particular trajectory with initial condition

$$\frac{2}{5}$$
 = $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Another Example

Consider the matrix
$$A = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix}$$
.

Using a computer we find


$$A^2 = \begin{pmatrix} .70 & .45 \\ .80 & .55 \end{pmatrix}$$

$$A^3 = \begin{pmatrix} .650 & .525 \\ .350 & .475 \end{pmatrix}$$

$$A^{4} = \begin{pmatrix} .6250 & 0.5622 \\ .3750 & 0.4375 \end{pmatrix}$$

$$A^{1D} = (0.600 0.599)$$

$$0.399 0.401$$

How are (cn) and (cn+1) related? Of the Cn birds in CAN now, . 8 cn stay and . 2 cn move. Of the un birds in USA now, . 7 un stay and . Bu, more. Hence Cnr. = .8cn + .3un Unt = , 2 un + . 7 un $\frac{c_{n+1}}{c_{n+1}} = \left(\frac{c_{n+1}}{c_{n+1}}\right) = \left(\frac{c_{n+1}}{c_{n+1}$ $\overrightarrow{\nabla}_{n+1} = \overrightarrow{A} \overrightarrow{\nabla}_{n}$ Say In is the state vector at time n Say A is the transition matrix. Example Start with To= (10)

Then
$$\overrightarrow{V}_1 = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} 10 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$

$$\overrightarrow{V}_2 = \overrightarrow{A} \overrightarrow{V}_1 = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$

$$\overrightarrow{V}_3 = \overrightarrow{A} \overrightarrow{V}_2 = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ 3 \end{pmatrix} = \begin{pmatrix} 6.5 \\ 3.5 \end{pmatrix}$$

$$\overrightarrow{Q} : \overrightarrow{C}.5 \text{ birds ?}$$

$$\overrightarrow{A} : \overrightarrow{Y}es. \text{ We're just secling with probabilities}$$

$$\overrightarrow{T}an \text{ general we have}$$

$$\overrightarrow{V}_1 = \overrightarrow{A} \overrightarrow{V}_{12}$$

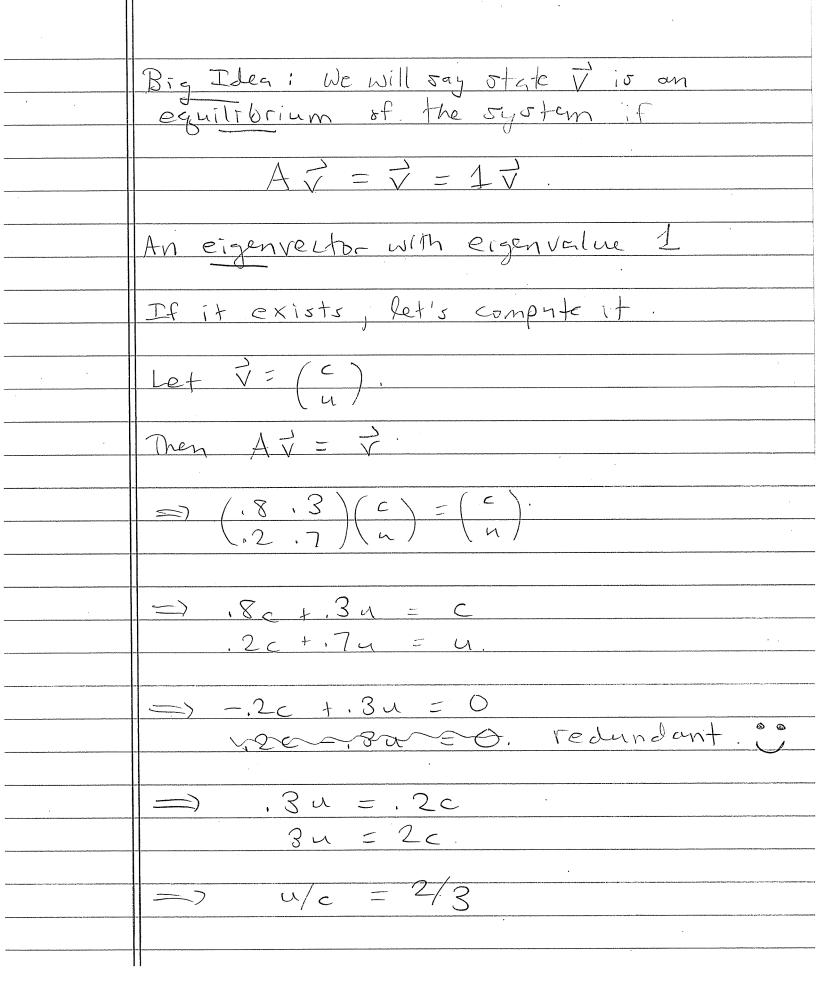
$$= \overrightarrow{A} \overrightarrow{A} \overrightarrow{V}_{13}$$

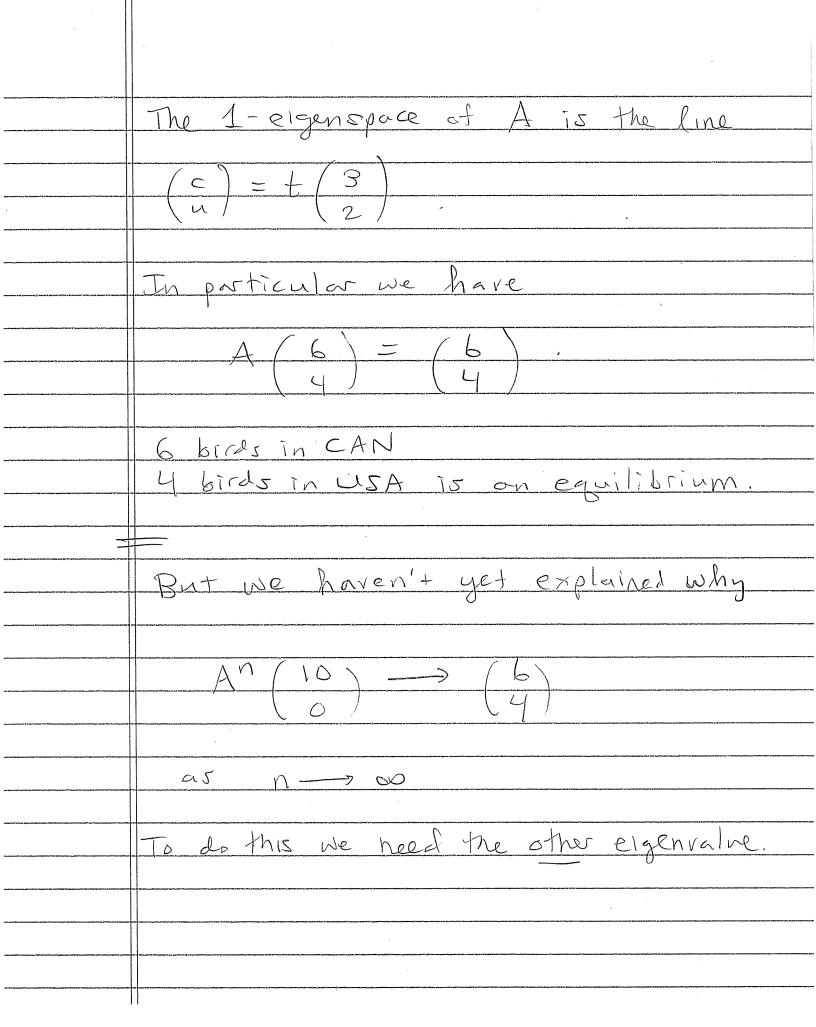
$$= \overrightarrow{A} \overrightarrow{A} \overrightarrow{V}_{13}$$

$$= \overrightarrow{A} \overrightarrow{A} \overrightarrow{V}_{13}$$

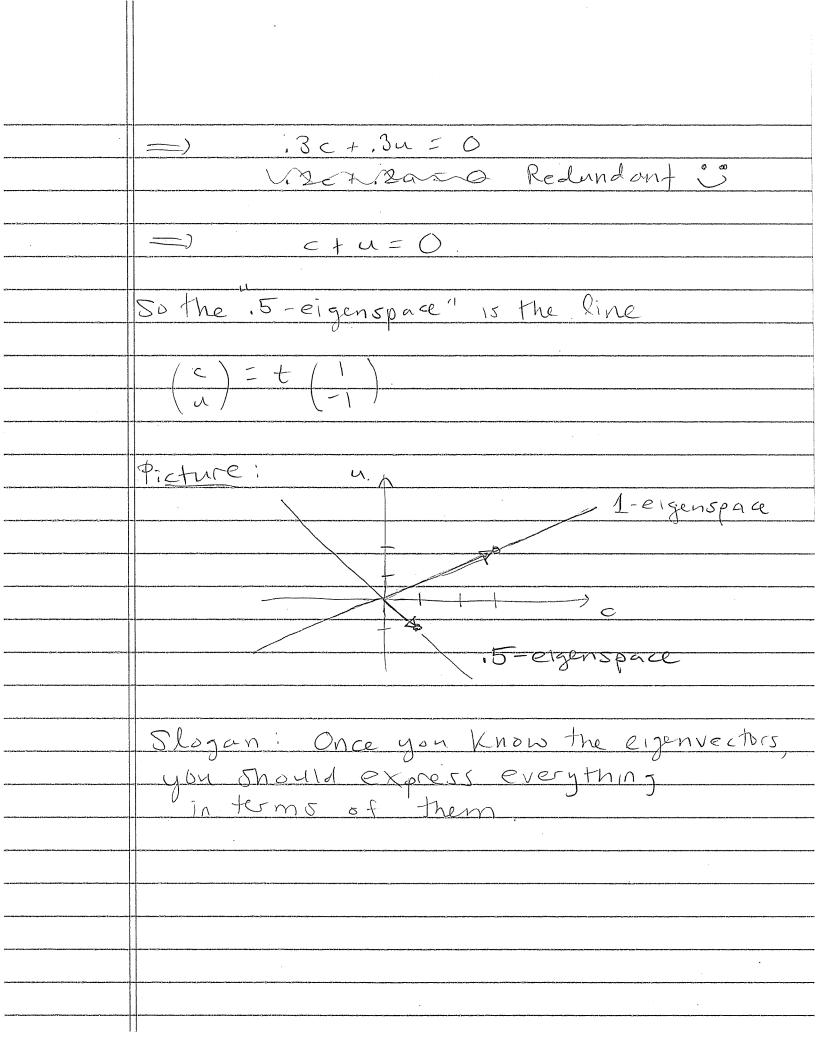
$$= \overrightarrow{A} \overrightarrow{A} \overrightarrow{V}_{13}$$

$$= \overrightarrow{A} \overrightarrow{A} \overrightarrow{V}_{13}$$


$$= \overrightarrow{A} \overrightarrow{V}_{13} = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} 10 \\ .2 & .7 \end{pmatrix}$$


$$\overrightarrow{C}_{2} \overrightarrow{V}_{13} = \overrightarrow{V}_{13} \overrightarrow{V}_{13}$$

$$= \overrightarrow{A} \overrightarrow{V}_{13} = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ .2 & .7 \end{pmatrix}$$


$$\overrightarrow{C}_{3} \overrightarrow{V}_{13} = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ .2 & .7 \end{pmatrix}$$

$$\overrightarrow{V}_{13} = \begin{pmatrix} .8 & .3 \\ .2 & .7 \end{pmatrix} \begin{pmatrix} .7 \\ .$$

The characteristic equation of (18.3) is $(.8-\lambda)(.7-\lambda)-(.2)(.3)=0$ $.56-.8\lambda-.7\lambda+\lambda^2-.06=0$ $3^{2} - 1.53 + .5 = 0$ $27^{2} - 33 + 1 = 0$ Hence the eigenvalues are $\gamma = 3 \pm \sqrt{(-3)^2 - 4(1)(2)} = 3 \pm 1$ = 1 or , 5. Let's compute the eigenvalues corresponding to eigenvalue. 5 $\frac{\left(\begin{array}{c} 1.8 & 1.3 \\ 1.2 & 1.7 \end{array}\right) \left(\begin{array}{c} 1.5 & 1.5 \\ 1.2 & 1.7 \end{array}\right) \left(\begin{array}{c} 1.5 & 1.5 \\ 1.2 & 1.7 \end{array}\right) \left(\begin{array}{c} 1.5 & 1.5 \\ 1.5 & 1.5 \end{array}\right)}{\left(\begin{array}{c} 1.5 & 1.5 \\ 1.5 & 1.5 \end{array}\right)}$ =7.8c+3u=.5c· 2c + .74 = .54

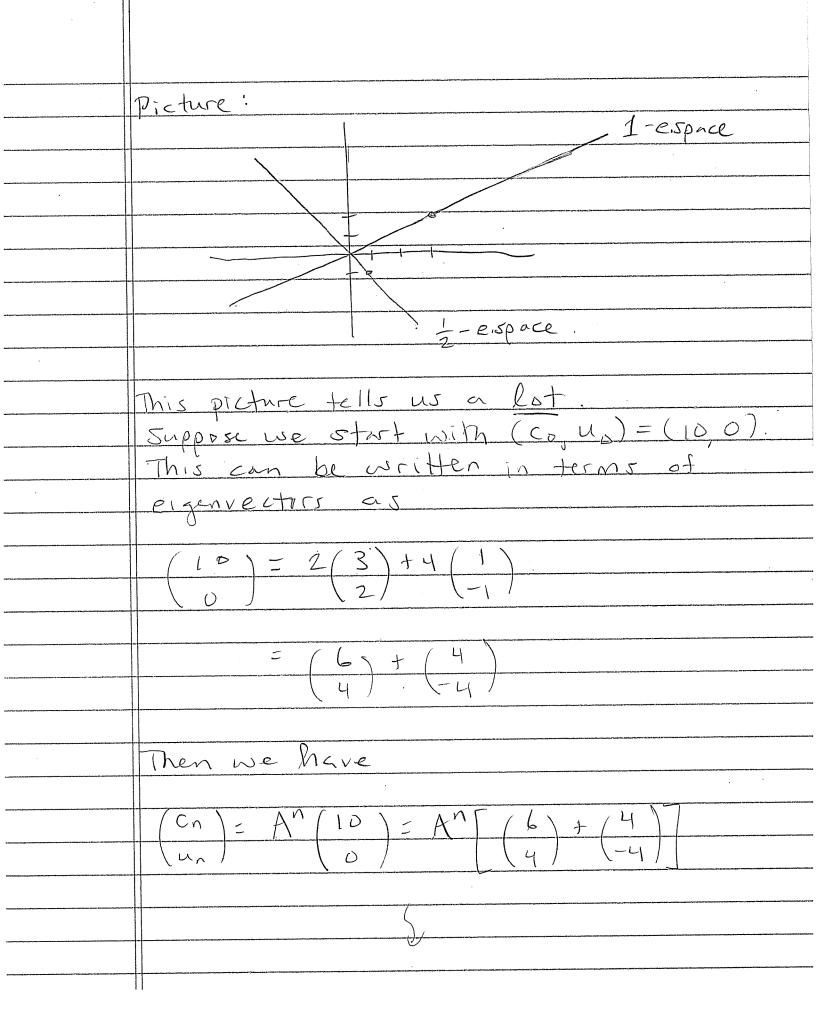
For example, let's express our initial state vector:

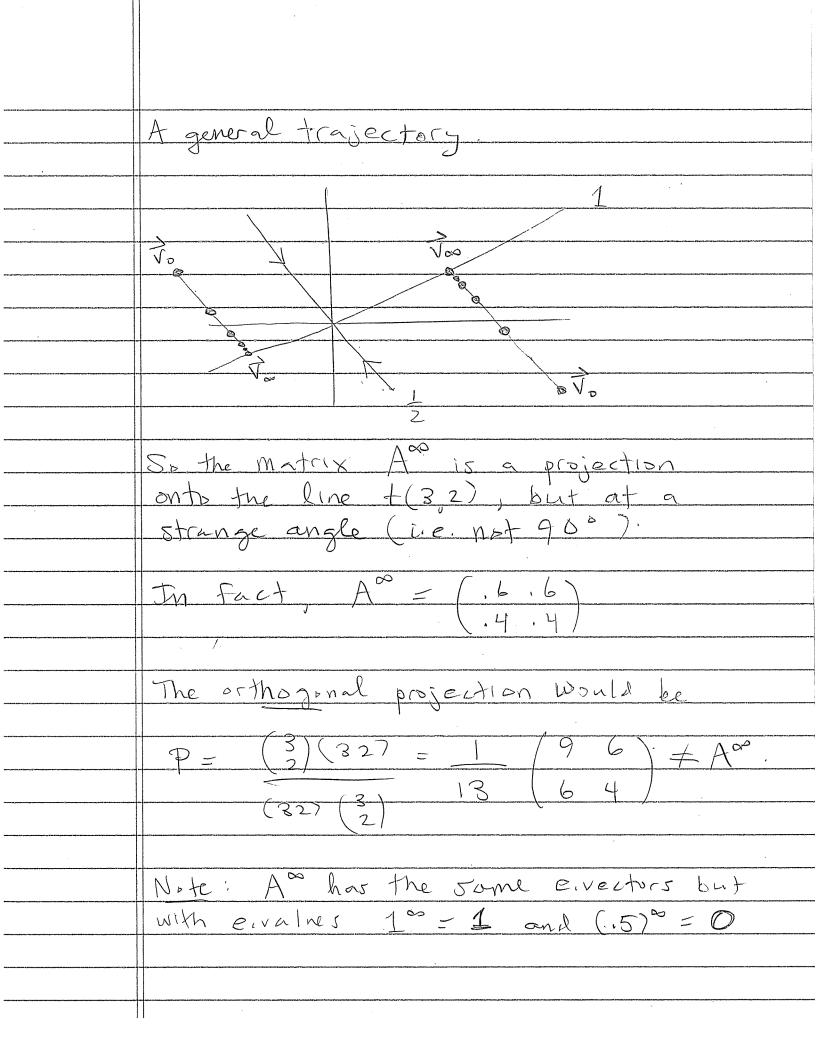
$$\begin{pmatrix}
10 \\
0
\end{pmatrix} = 2 \begin{pmatrix} 3 \\
2
\end{pmatrix} + 4 \begin{pmatrix} 1 \\
-1
\end{pmatrix}$$
Then we have

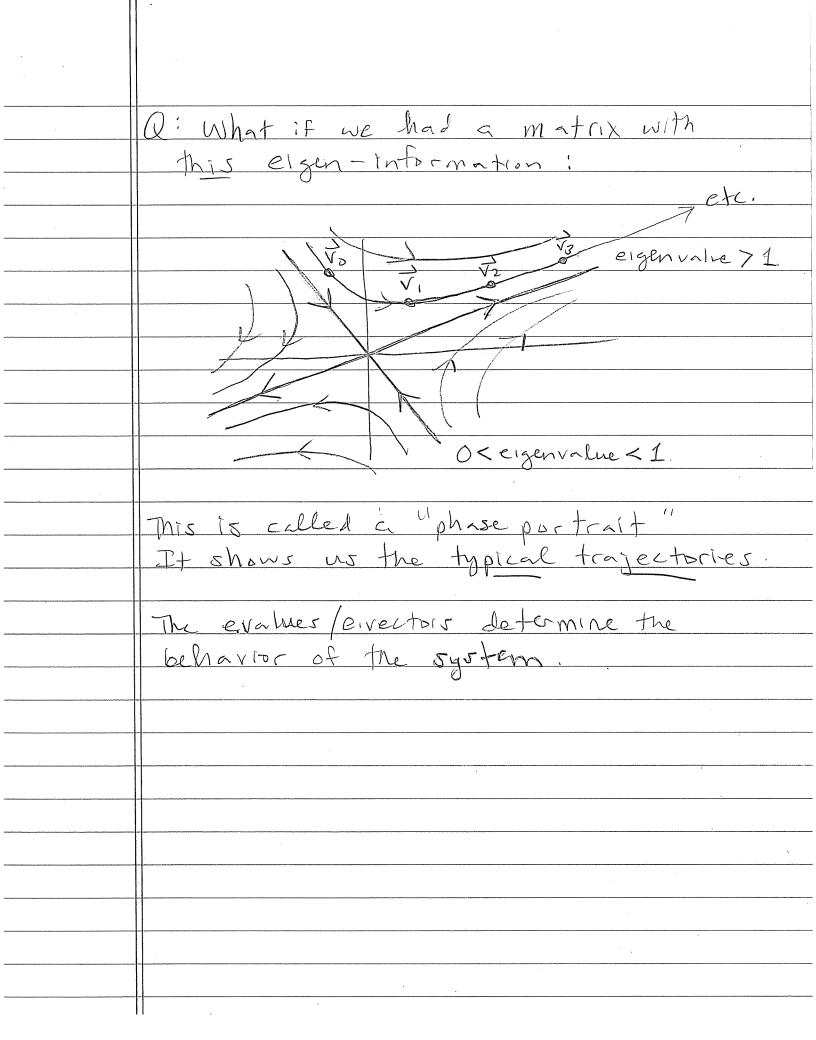
$$A^{n} \begin{pmatrix} 10 \\ 0
\end{pmatrix} = A^{n} \left[2 \begin{pmatrix} \frac{3}{2} \end{pmatrix} + 4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right]$$

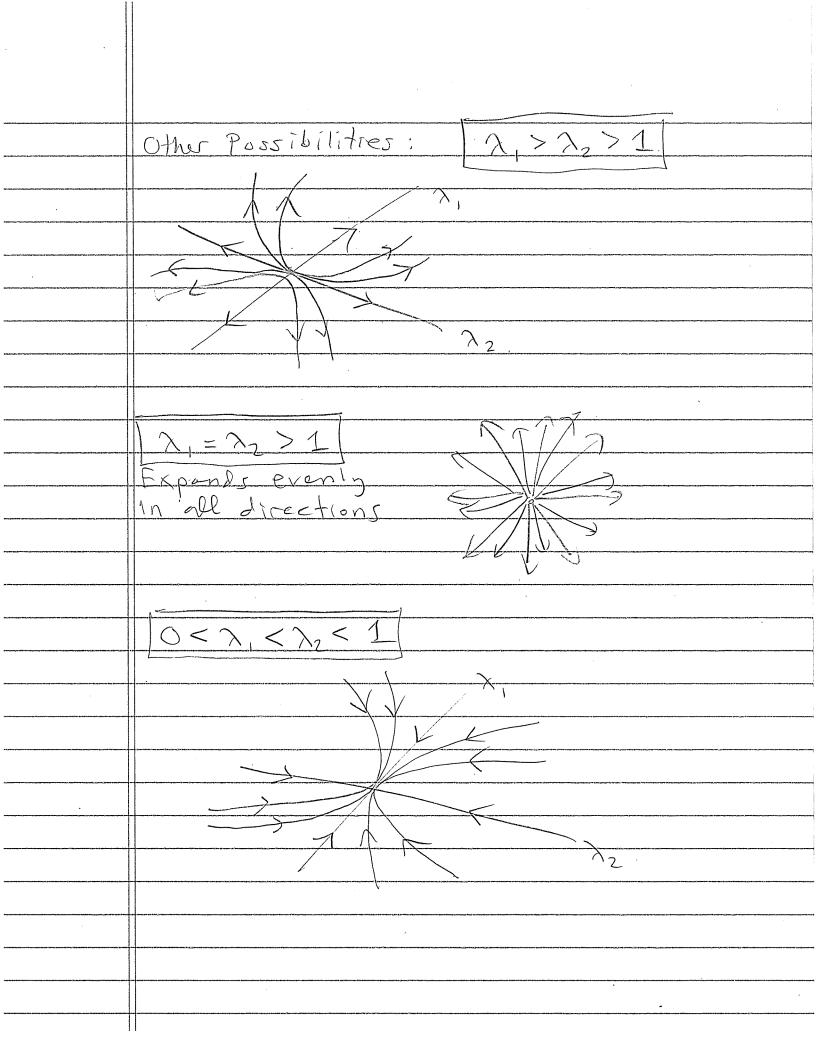
$$= 2 A^{n} \begin{pmatrix} \frac{3}{2} \end{pmatrix} + 4 A^{n} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

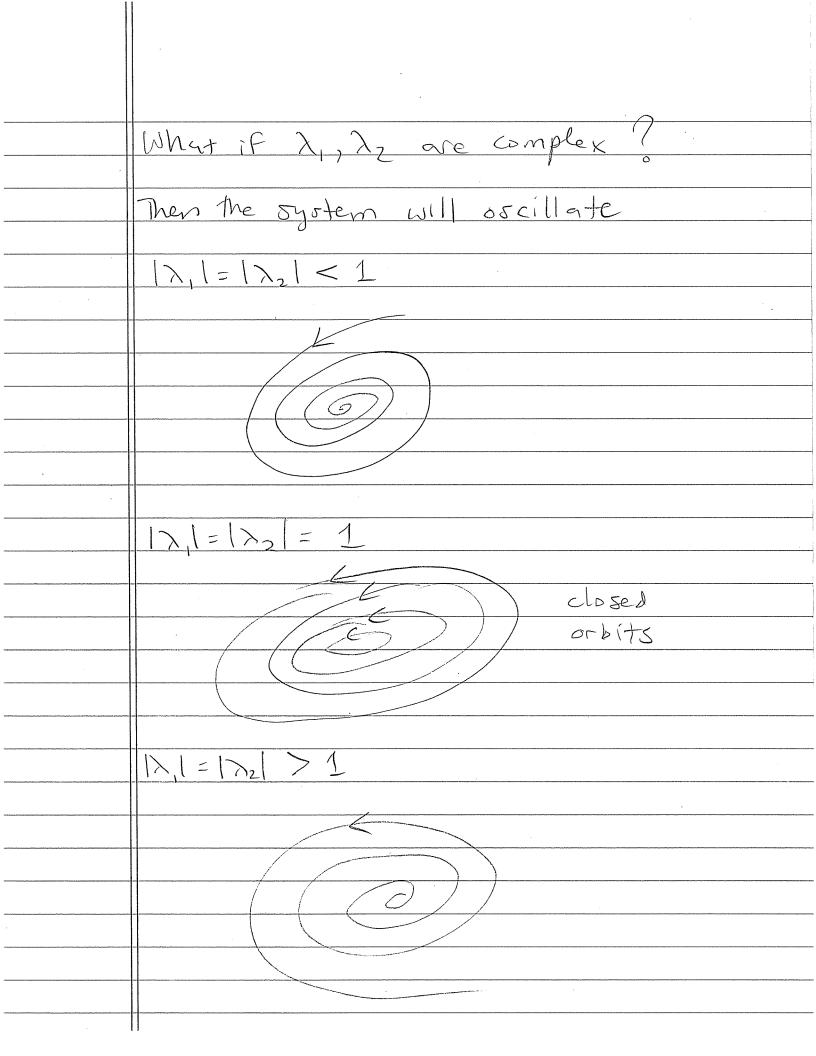
$$= 2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

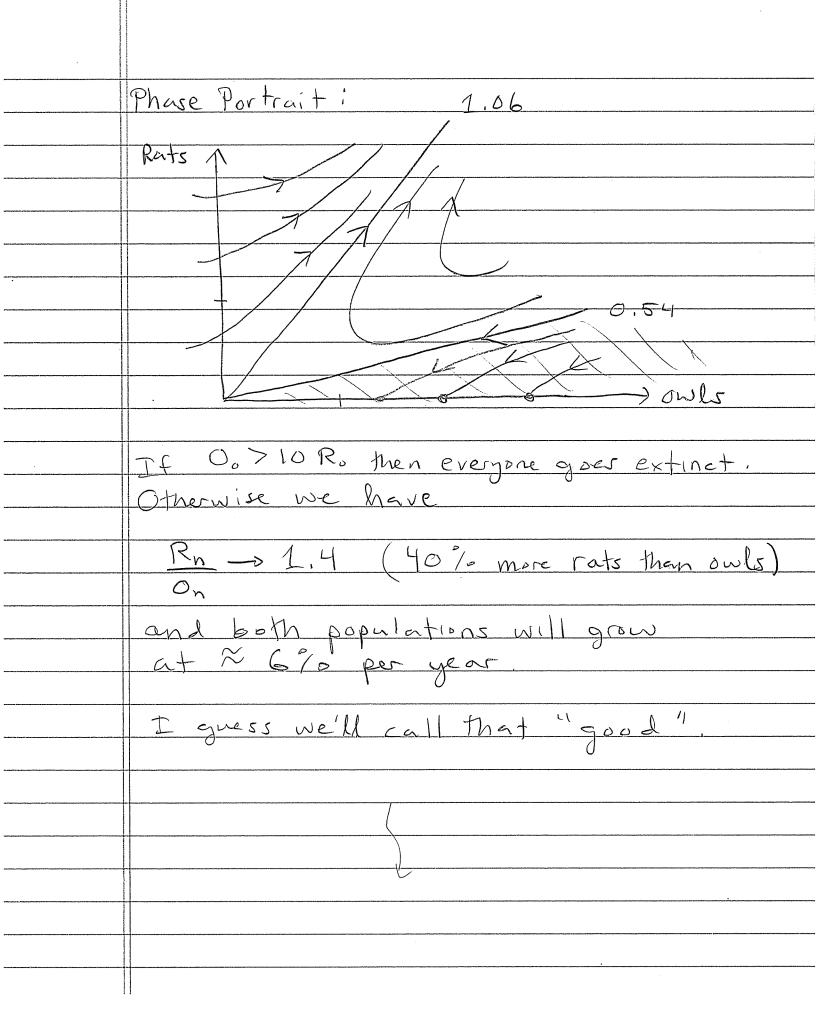

$$= \begin{pmatrix} 6 + 4/2n \\ 4 - 4/2n \end{pmatrix}$$

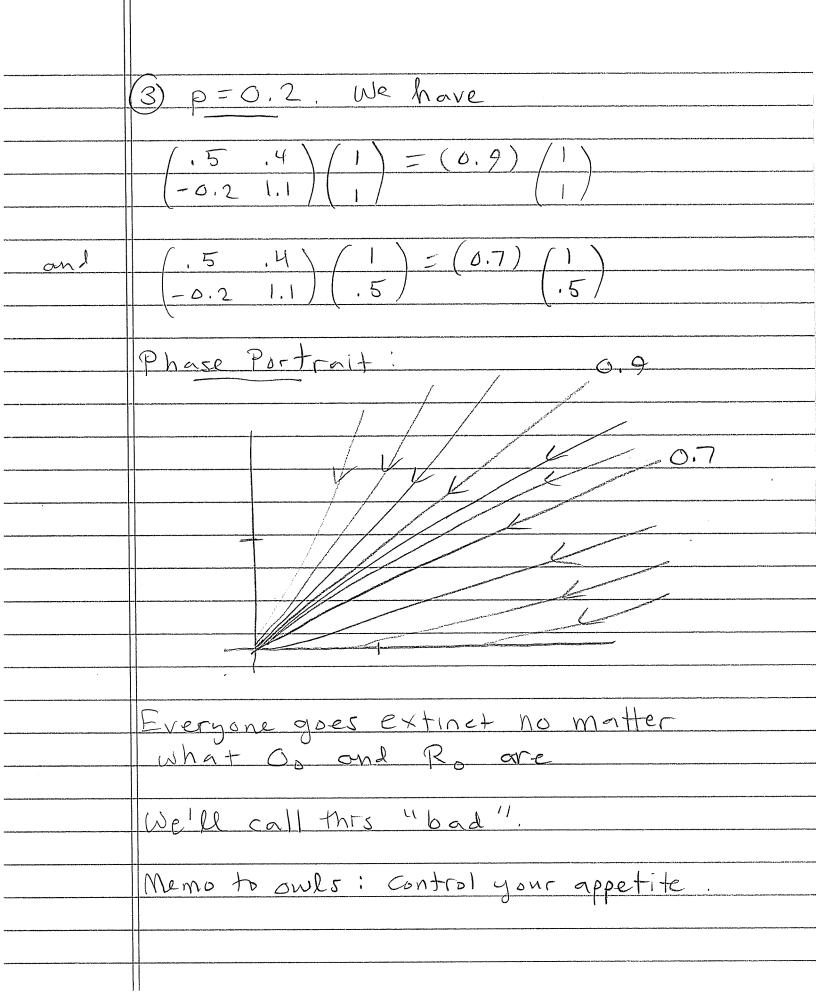

$$\begin{pmatrix} 4 - 4/2n \\ 4 - 4/2n \end{pmatrix}$$
As $n \to \infty$ we have
$$A^{n} \begin{pmatrix} 10 \\ 0 \end{pmatrix} \to \begin{pmatrix} 6 + 0 \\ 4 + 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$


Phase Portraits


Today: Phase Portraits.
J
Recall the birds
21
20%
10/0
(CAN). (USA)
 30%
and their transition matrix
 A = (.8.3)
 .2.7)
 If we let Cn = H birds in CAN at year n
 Un = H birds in USA at year n.


= A. (Cn-2)= AA - A (Co)
us
n times = \bigwedge^{n} $\binom{c}{u_{n}}$ To solve this system, i.e., to find formulas for (cn, un) in terms of (co, uo), we must compute the eigenvalues / eigenventors. The ervalues are 1 and 15. The eivectors are. $A + \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 1 + \begin{pmatrix} 3 \\ 2 \end{pmatrix} & A + \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 5 + \begin{pmatrix} 1 \\ -1 \end{pmatrix}$





Final Example: Owls vs. Rats

A CONTRACTOR OF THE PROPERTY OF THE ABOVE THE PROPERTY OF THE	Tillal Example: Owlo vs. Hats
	Ok+ = (.5) Ok + (.4) Rk
AND THE PROPERTY OF THE PROPER	
	$R_{kt} = -pO_k + (1.1)R_k.$
	Recurrence:
	$ \begin{pmatrix} Ok_{T_1} & = \begin{pmatrix} .5 & .4 \\ -p & 1.1 \end{pmatrix} \begin{pmatrix} Oh \\ Rh \end{pmatrix} $
	(Rer) (-p 1.1/ Rp)
	Initial Conditions NOT GIVEN.
	to Phose Port (1 for Home (1) or
	Draw the Phase Portrait for three values
	of p.
	1) p=0.056, We have
	$\begin{pmatrix} .5 & .4 \\ -0.056 & 1.1 \end{pmatrix} \begin{pmatrix} 1 \\ 1.4 \end{pmatrix} = \begin{pmatrix} 1.067 \\ 1.4 \end{pmatrix}$
	\-0.056 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
and	(.5,4)(1)=(0.54)(1)
- White	(-0.0561.1)

2) p=0.125. We have $\begin{pmatrix} 1 \\ 0.25 \end{pmatrix} = \begin{pmatrix} 0.6 \end{pmatrix} \begin{pmatrix} 1 \\ 0.2 \end{pmatrix}$ (.5 .4) -0.125 1.1) and Phase Portrait Rats 0.6 IF 0074 Ro then everyone goes extinct. Otherwise the populations approach a steady state with -0.250 or Ro owls and -0.312500+1:25 Ro rats We'll call this "OKay".

