
Math 210 Fall 2019
Summary of the Course Drew Armstrong

Points: Let Rn denote the set of n× 1 matrices of real numbers:

x =


x1
x2
...
xn

 .

We call these “points” in n-dimensional Cartesian space.

Vectors: We will also think of a point x in Rn as a directed line segment (a “vector”) with
its tail at the origin 0 and its head at the point x. This idea is subtle because we are allowed
to pick up the arrow and move it as long as we don’t change its length or direction.

Parallolgram Law: Consider two points x and y in Rn. The points 0,x,y form three
vertices of a 2D parallelogram living in Rn. The fourth vertex of the parallogram is

x + y =


x1
x2
...
xn

+


y1
y2
...
yn

 :=


x1 + y1
x2 + y2

...
xn + yn

 .

Subtraction of Vectors: Consider two points x,y in Rn. The vector with tail at x and
head at y is represented by the point

y − x =


y1
y2
...
yn

−

x1
x2
...
xn

 :=


y1 − x1
y2 − x2

...
yn − xn

 .

Vector Arithmetic: Consider vectors x,y, z in Rn and numbers a, b in R. Then we have

x + y = y + x,
x + (y + z) = (x + y) + z,
a(x + y) = ax + ay,
(a+ b)x = ax + bx.

Dot Product: Given vectors x,y in Rn, we define their dot product as the number

x • y =


x1
x2
...
xn

 •

y1
y2
...
yn

 := x1y1 + x2y2 + · · ·+ xnyn.

More Vector Arithmetic: For all vectors x,y, z in Rn and numbers a in R we have

x • y = y • x,
x • (y + az) = x • y + ax • z.



Pythagorean Theorem: Given a vector x in Rn its “length” ‖x‖ is the non-negative number
defined by

‖x‖2 = x • x = x21 + x22 + · · ·x2n.

Law of Cosines: Consider two vectors x,y in Rn. These vectors together with their difference
y − x form the three sides of a 2D triangle in Rn. By applying the formulas above we get

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2(x • y).

On the other hand, the classical Law of Cosines for triangles tells us that

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ,

where θ is the angle between the vectors x and y. Then comparing the two equations gives

x • y = ‖x‖‖y‖ cos θ.

In particular, this tells us that x ⊥ y if and only if x • y = 0.

Lines in R2: A line in the plane can be written in parametric form as(
x
y

)
=

(
x0
y0

)
+ t

(
u
v

)
.

This is the line containing the point (x0, y0) and parallel to the vector (u, v). Or it can be
expressed by an equation

ax+ by = c

where (a, b) is some vector perpendicular (“normal”) to the line. This line contains the origin

(0, 0) if and only if c = 0. In general, the line has minimum distance c/
√
a2 + b2 from the

origin.

Planes in R3: A plane in 3-dimensional space can be written in parametric form asxy
z

 =

x0y0
z0

+ s

u1v1
w1

+ t

u2v2
w2

 .

This is the plane containing the point (x0, y0, z0) and spanned by the vectors (u1, v1, w1) and
(u2, v2, w2). Or it can be expressed by an equation

ax+ by + cz = d

where (a, b, c) is some vector perpendicular (“normal”) to the plane. This plane contains the

origin (0, 0, 0) if and only if d = 0. In general, the plane has minimum distance d/
√
a2 + b2 + c2

from the origin.

Lines in R3: A line in 3-dimensional space can be written in parametric form asxy
z

 =

x0y0
z0

+ t

uv
w

 .

This is the line containing the point (x0, y0, z0) and parallel to the vector (u, v, w). However,
a line in 3D can not be defined by a single equation. It can be defined as the solution of a
system of two linear equations in three unknowns. Geometrically, this expresses the line as an
intersection of two planes.



Systems of Linear Equations: A system of m linear equations in n unknowns has the
following form: 

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

Alternatively, we can write it as a matrix equation:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1
x2
...
xn

 =


b1
b2
...
bm

 .

And we usually shorten it to this:

Ax = b.

The Geometric Picture: A single linear equation a • x = b represents a flat (n − 1)-
dimensional shape living in Rn, called a “hyperplane.” A system of m linear equations ai•x =
bi represents the intersection of m hyperplanes, which forms a flat d-dimensional shape (called
a “d-plane”) living in Rn. Most likely we will have d = n−m = # variables − # equations.

Gaussian Elimination: A system of linear equations Ax = b can be solved by putting
the system in Reduced Row Echelon Form (RREF) by Gaussian elimination. Each non-pivot
column in the RREF leads to a free variable, so if there are d non-pivot columns in the RREF
the solution will be a d-plane. Each non-pivot column also tells us an explicit non-trivial
relation among the columns of A. We call d the “nullity” of A, and write d = null(A).

Fundamental Theorem I: The set of vectors of the form Ax is called the column space of
the matrix A, because it consists of all linear combinations of the columns. If A has shape
m×n then the column space is a subspace of Rm. The dimension of the column space is called
the “rank” of A, written rank(A). It is equal to the number of pivot columns in the RREF.
Since the total number of columns in the RREF is n, we obtain

rank(A) + null(A) = n.

Fundamental Theorem II: Let A have shape m× n. Many times I have told you that the
equation ATe = 0 means that the vector e is perpendicular to all of the columns of A. In
other words, the nullspace of AT is the “orthogonal complement” to the column space of A.
It follows from this that their dimensions add to m, i.e., null(AT ) + rank(A) = m. Combining
this with the Fundamental Theorem above gives the following surprising equation:

rank(AT ) = rank(A).

In other words, the row space and the column space of A have the same dimension!

Matrix Multiplication: Let A have shape ` ×m and let B have shape m × n. Then the
matrix AB exists and has shape `× n. It is defined by requiring that the following equation
holds for all x in Rn:

(AB)x = A(Bx).

However, if we want to actually compute the matrix AB we use the following rules:



((i, j)th entry of AB) = (ith row of A)(jth column of B)

(ith row of AB) = (ith row of A) B

(jth column of AB) = A (jth column of B).

If x and y are column vectors of the same size then the language of matrix multiplication
gives us a new notation for the dot product:

xTy = x • y = y • x = yTx.

Inverse Matrices: Let A have shape m × n. We say that B is an inverse matrix of A if
AB = Im and BA = In. But this is impossible unless m = n. (Reason: The matrix A has
shape m×n. If m < n then RREF(A) has at least one non-pivot column so there exists some
nonzero vector x 6= 0 with Bx = 0. But then we have x = Ix = BAx = B0 = 0, which is a
contradiction. If m > n then apply the same argument to B.) If A has shape n × n then it
might have an inverse. To compute the inverse we do this trick:

(A|I)
RREF−−−−→

(
I|A−1

)
If the trick doesn’t work (because A had some row relation or column relation) then we
conclude that A has no inverse.

The Determinant: For any square matrix A there is a number det(A), called the determinant
of A, which has the following property:

A is invertible ⇐⇒ det(A) 6= 0.

The determinant of a 2× 2 matrix is defined as follows:

det

(
a b
c d

)
= ad− bc.

And this leads to an explicit formula for the inverse of a 2× 2 matrix:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

We did not compute the determinants of larger matrices in this class.

Uniqueness of Inverses: Suppose that we have AB = I and CA = I. It follows that

C = CI = C(AB) = (CA)B = IB = B.

Hence if A has an inverse matrix, this matrix is unique. We give it the special name A−1.

Matrix Arithmetic: Consider matrices A,B,C and numbers x, y. The following formulas
hold as long as the respective matrices exist:

A+B = B +A

A+ (B + C) = (A+B) + C

A(BC) = (AB)C

(x+ y)A = xA+ yA

x(AB) = (xA)B = A(xB)

A(B + xC) = AB + xAC

(A+ xB)C = AC + xBC



(A+B)T = AT +BT

(AB)T = BTAT

(AB)−1 = B−1A−1

(AT )−1 = (A−1)T .

WARNING: The following two formulas are NOT generally true:

AB = BA
(A+B)−1 = A−1 +B−1.

Solutions of a Linear System are Flat: Suppose we have two solutions of a linear system:
Ax = b and Ay = b. Then for any number t we have

A(tx + (1− t)y) = tAx + (1− t)Ay = tb + (1− t)b = b.

This implies that every point of the line tx + (1 − t)y is also a solution. This is what I
mean when I say that the solutions of a linear system form a d-plane. Geometrically: If m
hyperplanes in n-dimensional space meet at two points x,y then they also meet at the whole
line tx + (1− t)y.

Least Squares Regression: Suppose that the linear system Ax = b has no solution. This
means that the point b is not in the column space of A. In this case we want to find some
Ax = p where the distance ‖p−b‖ is as small as possible. This is achieved when AT (p−b) = 0,
i.e., when the vector p − b is perpendicular to the column space of A. By combining these
facts we obtain the “normal equation”:

ATAx = ATb.

The most common application of this equation to fit a line to a collection of points.

Orthogonal Projection: Let A be an m×n matrix and suppose that the square n×n matrix
ATA is invertible. Then from the previous topic we find that the orthogonal projection of b
onto the column space of A is given by p = Ax = A(ATA)−1ATb. In other words, then the
matrix of the projection function is given by

P = A(ATA)−1AT .

This is an m ×m matrix satisfying P 2 = P and P T = P . If Q is the matrix that projects
onto the nullspace of AT (which consists of all vectors perpendicular to the column space of
A) then we have

P +Q = Im and PQ = QP = 0.

Special case: If A = a is a column vector (i.e., if n = 1) then the matrix that projects onto
the line ta is given by

P = a(aTa)−1aT =
1

aTa
aaT =

1

‖a‖2
aaT .

The matrix that projects onto the hyperplane aTx = 0 is given by I − P .

Eigenvectors and Eigenvalues: Let A be an n× n matrix. We say that λ is an eigenvalue
of A if there exists a nonzero vector x 6= 0 such that

Ax = λx.



In this case we say that x is a λ-eigenvector of A. Equivalently, we say that λ is an eigenvalue of
A when there exists a nonzero vector x 6= 0 such that (A−λI)x = 0, i.e., when det(A−λI) = 0.
In the case of a 2× 2 matrix we can write this characteristic equation explicitly as follows:

0 = det

(
a− λ b
c d− λ

)
= λ2 − (a+ d)λ+ (ad− bc).

Hence the matrix has the following two eigenvalues:

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2
.

Arithmetic of Eigenvalues: If a square matrix A satisfies some polynomial equation then
its eigenvalues must satisfy the same equation. For example: If λ is an eigenvalue of A then
λ2 is an eigenvalue of A2, 2λ− 1 is an eigenvalue of 2A− I and 3λ2−λ+ 5 is an eigenvalue of
3A2 − A+ 5I. Furthermore, if A is invertible then λ−1 is an eigenvalue of A−1. Application:
If P is a projection then the equation P 2 − P = 0 implies that every eigenvalue satisfies
λ2 − λ = 0, hence the only possible eigenvalues of P are 0 and 1.

Discrete Dynamical Systems: Suppose you have a linear recurrence relation defined by
vn+1 = Avn. If v0 is the initial condition then the nth state vector is given by

vn = Anv0.

To solve this equation we first find the eigenvalues of A via the characteristic equation and
then we find some corresponding eigenvectors. Suppose we find some eigenvectors:

Ax = λx and Ay = µy.

Then we try to express our initial condition in terms of eigenvectors: v0 = ax + by. If we’re
successful (i.e., if the matrix A has enough eigenvectors) then we can use this to obtain a
“closed form” solution to the recurrence:

vn = Anv0 = An(ax + by)

= aAnx + bAny

= aλnx + bµny.

If the matrix doesn’t have enough eigenvectors (i.e., if the matrix is not “diagonalizable”) then
we might be out of luck.


