Points: Let \mathbb{R}^{n} denote the set of $n \times 1$ matrices of real numbers:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

We call these "points" in n-dimensional Cartesian space.
Vectors: We will also think of a point \mathbf{x} in \mathbb{R}^{n} as a directed line segment (a "vector") with its tail at the origin $\mathbf{0}$ and its head at the point \mathbf{x}. This idea is subtle because we are allowed to pick up the arrow and move it as long as we don't change its length or direction.

Parallolgram Law: Consider two points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n}. The points $\mathbf{0}, \mathbf{x}, \mathbf{y}$ form three vertices of a 2 D parallelogram living in \mathbb{R}^{n}. The fourth vertex of the parallogram is

$$
\mathbf{x}+\mathbf{y}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right):=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right) .
$$

Subtraction of Vectors: Consider two points \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}. The vector with tail at \mathbf{x} and head at \mathbf{y} is represented by the point

$$
\mathbf{y}-\mathbf{x}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)-\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right):=\left(\begin{array}{c}
y_{1}-x_{1} \\
y_{2}-x_{2} \\
\vdots \\
y_{n}-x_{n}
\end{array}\right) .
$$

Vector Arithmetic: Consider vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^{n} and numbers a, b in \mathbb{R}. Then we have

$$
\begin{aligned}
& \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x} \\
& \mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z}, \\
& a(\mathbf{x}+\mathbf{y})=a \mathbf{x}+a \mathbf{y}, \\
& (a+b) \mathbf{x}=a \mathbf{x}+b \mathbf{x} .
\end{aligned}
$$

Dot Product: Given vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}, we define their dot product as the number

$$
\mathbf{x} \bullet \mathbf{y}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \bullet\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right):=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} .
$$

More Vector Arithmetic: For all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^{n} and numbers a in \mathbb{R} we have

Pythagorean Theorem: Given a vector \mathbf{x} in \mathbb{R}^{n} its "length" $\|\mathrm{x}\|$ is the non-negative number defined by

$$
\|\mathbf{x}\|^{2}=\mathbf{x} \bullet \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}
$$

Law of Cosines: Consider two vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}. These vectors together with their difference $\mathbf{y}-\mathbf{x}$ form the three sides of a 2D triangle in \mathbb{R}^{n}. By applying the formulas above we get

$$
\|\mathbf{y}-\mathbf{x}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2(\mathrm{x} \bullet \mathbf{y}) .
$$

On the other hand, the classical Law of Cosines for triangles tells us that

$$
\|\mathbf{y}-\mathbf{x}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

where θ is the angle between the vectors \mathbf{x} and \mathbf{y}. Then comparing the two equations gives

$$
\mathbf{x} \bullet \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

In particular, this tells us that $\mathbf{x} \perp \mathbf{y}$ if and only if $\mathbf{x} \bullet \mathbf{y}=0$.
Lines in \mathbb{R}^{2} : A line in the plane can be written in parametric form as

$$
\binom{x}{y}=\binom{x_{0}}{y_{0}}+t\binom{u}{v} .
$$

This is the line containing the point $\left(x_{0}, y_{0}\right)$ and parallel to the vector (u, v). Or it can be expressed by an equation

$$
a x+b y=c
$$

where (a, b) is some vector perpendicular ("normal") to the line. This line contains the origin $(0,0)$ if and only if $c=0$. In general, the line has minimum distance $c / \sqrt{a^{2}+b^{2}}$ from the origin.

Planes in \mathbb{R}^{3} : A plane in 3-dimensional space can be written in parametric form as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+s\left(\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right)+t\left(\begin{array}{c}
u_{2} \\
v_{2} \\
w_{2}
\end{array}\right) .
$$

This is the plane containing the point $\left(x_{0}, y_{0}, z_{0}\right)$ and spanned by the vectors $\left(u_{1}, v_{1}, w_{1}\right)$ and (u_{2}, v_{2}, w_{2}). Or it can be expressed by an equation

$$
a x+b y+c z=d
$$

where (a, b, c) is some vector perpendicular ("normal") to the plane. This plane contains the origin $(0,0,0)$ if and only if $d=0$. In general, the plane has minimum distance $d / \sqrt{a^{2}+b^{2}+c^{2}}$ from the origin.

Lines in \mathbb{R}^{3} : A line in 3-dimensional space can be written in parametric form as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right)+t\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) .
$$

This is the line containing the point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector (u, v, w). However, a line in 3D can not be defined by a single equation. It can be defined as the solution of a system of two linear equations in three unknowns. Geometrically, this expresses the line as an intersection of two planes.

Systems of Linear Equations: A system of m linear equations in n unknowns has the following form:

Alternatively, we can write it as a matrix equation:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) .
$$

And we usually shorten it to this:

$$
A \mathbf{x}=\mathbf{b} .
$$

The Geometric Picture: A single linear equation $\mathbf{a} \bullet \mathbf{x}=b$ represents a flat $(n-1)$ dimensional shape living in \mathbb{R}^{n}, called a "hyperplane." A system of m linear equations $\mathbf{a}_{i} \bullet \mathbf{x}=$ b_{i} represents the intersection of m hyperplanes, which forms a flat d-dimensional shape (called a " d-plane") living in \mathbb{R}^{n}. Most likely we will have $d=n-m=\#$ variables - \# equations.

Gaussian Elimination: A system of linear equations $A \mathbf{x}=\mathbf{b}$ can be solved by putting the system in Reduced Row Echelon Form (RREF) by Gaussian elimination. Each non-pivot column in the RREF leads to a free variable, so if there are d non-pivot columns in the RREF the solution will be a d-plane. Each non-pivot column also tells us an explicit non-trivial relation among the columns of A. We call d the "nullity" of A, and write $d=\operatorname{null}(A)$.

Fundamental Theorem I: The set of vectors of the form $A \mathbf{x}$ is called the column space of the matrix A, because it consists of all linear combinations of the columns. If A has shape $m \times n$ then the column space is a subspace of \mathbb{R}^{m}. The dimension of the column space is called the "rank" of A, written $\operatorname{rank}(A)$. It is equal to the number of pivot columns in the RREF. Since the total number of columns in the RREF is n, we obtain

$$
\operatorname{rank}(A)+\operatorname{null}(A)=n .
$$

Fundamental Theorem II: Let A have shape $m \times n$. Many times I have told you that the equation $A^{T} \mathbf{e}=\mathbf{0}$ means that the vector \mathbf{e} is perpendicular to all of the columns of A. In other words, the nullspace of A^{T} is the "orthogonal complement" to the column space of A. It follows from this that their dimensions add to m, i.e., $\operatorname{null}\left(A^{T}\right)+\operatorname{rank}(A)=m$. Combining this with the Fundamental Theorem above gives the following surprising equation:

$$
\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A) .
$$

In other words, the row space and the column space of A have the same dimension!
Matrix Multiplication: Let A have shape $\ell \times m$ and let B have shape $m \times n$. Then the matrix $A B$ exists and has shape $\ell \times n$. It is defined by requiring that the following equation holds for all x in \mathbb{R}^{n} :

$$
(A B) \mathbf{x}=A(B \mathbf{x}) .
$$

However, if we want to actually compute the matrix $A B$ we use the following rules:
$((i, j)$ th entry of $A B)=(i$ th row of $A)(j$ th column of $B)$
$(i$ th row of $A B)=(i$ th row of $A) B$
$(j$ th column of $A B)=A(j$ th column of $B)$.
If \mathbf{x} and \mathbf{y} are column vectors of the same size then the language of matrix multiplication gives us a new notation for the dot product:

$$
\mathbf{x}^{T} \mathbf{y}=\mathrm{x} \bullet \mathbf{y}=\mathrm{y} \bullet \mathbf{x}=\mathbf{y}^{T} \mathbf{x} .
$$

Inverse Matrices: Let A have shape $m \times n$. We say that B is an inverse matrix of A if $A B=I_{m}$ and $B A=I_{n}$. But this is impossible unless $m=n$. (Reason: The matrix A has shape $m \times n$. If $m<n$ then $\operatorname{RREF}(A)$ has at least one non-pivot column so there exists some nonzero vector $\mathbf{x} \neq \mathbf{0}$ with $B \mathbf{x}=\mathbf{0}$. But then we have $\mathbf{x}=I \mathbf{x}=B A \mathbf{x}=B \mathbf{0}=\mathbf{0}$, which is a contradiction. If $m>n$ then apply the same argument to B.) If A has shape $n \times n$ then it might have an inverse. To compute the inverse we do this trick:

$$
(A \mid I) \xrightarrow{\mathrm{RREF}}\left(I \mid A^{-1}\right)
$$

If the trick doesn't work (because A had some row relation or column relation) then we conclude that A has no inverse.

The Determinant: For any square matrix A there is a number $\operatorname{det}(A)$, called the determinant of A, which has the following property:

$$
A \text { is invertible } \Longleftrightarrow \operatorname{det}(A) \neq 0
$$

The determinant of a 2×2 matrix is defined as follows:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

And this leads to an explicit formula for the inverse of a 2×2 matrix:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

We did not compute the determinants of larger matrices in this class.
Uniqueness of Inverses: Suppose that we have $A B=I$ and $C A=I$. It follows that

$$
C=C I=C(A B)=(C A) B=I B=B .
$$

Hence if A has an inverse matrix, this matrix is unique. We give it the special name A^{-1}.
Matrix Arithmetic: Consider matrices A, B, C and numbers x, y. The following formulas hold as long as the respective matrices exist:

$$
\begin{aligned}
& A+B=B+A \\
& A+(B+C)=(A+B)+C \\
& A(B C)=(A B) C \\
& (x+y) A=x A+y A \\
& x(A B)=(x A) B=A(x B) \\
& A(B+x C)=A B+x A C \\
& (A+x B) C=A C+x B C
\end{aligned}
$$

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{T} \\
& (A B)^{T}=B^{T} A^{T} \\
& (A B)^{-1}=B^{-1} A^{-1} \\
& \left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
\end{aligned}
$$

WARNING: The following two formulas are NOT generally true:

$$
\begin{aligned}
& A B=B A \\
& (A+B)^{-1}=A^{-1}+B^{-1}
\end{aligned}
$$

Solutions of a Linear System are Flat: Suppose we have two solutions of a linear system: $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{y}=\mathbf{b}$. Then for any number t we have

$$
A(t \mathbf{x}+(1-t) \mathbf{y})=t A \mathbf{x}+(1-t) A \mathbf{y}=t \mathbf{b}+(1-t) \mathbf{b}=\mathbf{b}
$$

This implies that every point of the line $t \mathbf{x}+(1-t) \mathbf{y}$ is also a solution. This is what I mean when I say that the solutions of a linear system form a d-plane. Geometrically: If m hyperplanes in n-dimensional space meet at two points \mathbf{x}, \mathbf{y} then they also meet at the whole line $t \mathbf{x}+(1-t) \mathbf{y}$.

Least Squares Regression: Suppose that the linear system $A \mathbf{x}=\mathbf{b}$ has no solution. This means that the point \mathbf{b} is not in the column space of A. In this case we want to find some $A \mathbf{x}=\mathbf{p}$ where the distance $\|\mathbf{p}-\mathbf{b}\|$ is as small as possible. This is achieved when $A^{T}(\mathbf{p}-\mathbf{b})=\mathbf{0}$, i.e., when the vector $\mathbf{p}-\mathbf{b}$ is perpendicular to the column space of A. By combining these facts we obtain the "normal equation":

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

The most common application of this equation to fit a line to a collection of points.
Orthogonal Projection: Let A be an $m \times n$ matrix and suppose that the square $n \times n$ matrix $A^{T} A$ is invertible. Then from the previous topic we find that the orthogonal projection of \mathbf{b} onto the column space of A is given by $\mathbf{p}=A \mathbf{x}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$. In other words, then the matrix of the projection function is given by

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

This is an $m \times m$ matrix satisfying $P^{2}=P$ and $P^{T}=P$. If Q is the matrix that projects onto the nullspace of A^{T} (which consists of all vectors perpendicular to the column space of A) then we have

$$
P+Q=I_{m} \quad \text { and } \quad P Q=Q P=0
$$

Special case: If $A=\mathbf{a}$ is a column vector (i.e., if $n=1$) then the matrix that projects onto the line t a is given by

$$
P=\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}^{T}=\frac{1}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a} \mathbf{a}^{T}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}
$$

The matrix that projects onto the hyperplane $\mathbf{a}^{T} \mathbf{x}=0$ is given by $I-P$.
Eigenvectors and Eigenvalues: Let A be an $n \times n$ matrix. We say that λ is an eigenvalue of A if there exists a nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

In this case we say that \mathbf{x} is a λ-eigenvector of A. Equivalently, we say that λ is an eigenvalue of A when there exists a nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $(A-\lambda I) \mathbf{x}=\mathbf{0}$, i.e., when $\operatorname{det}(A-\lambda I)=0$. In the case of a 2×2 matrix we can write this characteristic equation explicitly as follows:

$$
0=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

Hence the matrix has the following two eigenvalues:

$$
\lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
$$

Arithmetic of Eigenvalues: If a square matrix A satisfies some polynomial equation then its eigenvalues must satisfy the same equation. For example: If λ is an eigenvalue of A then λ^{2} is an eigenvalue of $A^{2}, 2 \lambda-1$ is an eigenvalue of $2 A-I$ and $3 \lambda^{2}-\lambda+5$ is an eigenvalue of $3 A^{2}-A+5 I$. Furthermore, if A is invertible then λ^{-1} is an eigenvalue of A^{-1}. Application: If P is a projection then the equation $P^{2}-P=0$ implies that every eigenvalue satisfies $\lambda^{2}-\lambda=0$, hence the only possible eigenvalues of P are 0 and 1 .

Discrete Dynamical Systems: Suppose you have a linear recurrence relation defined by $\mathbf{v}_{n+1}=A \mathbf{v}_{n}$. If \mathbf{v}_{0} is the initial condition then the nth state vector is given by

$$
\mathbf{v}_{n}=A^{n} \mathbf{v}_{0}
$$

To solve this equation we first find the eigenvalues of A via the characteristic equation and then we find some corresponding eigenvectors. Suppose we find some eigenvectors:

$$
A \mathbf{x}=\lambda \mathbf{x} \quad \text { and } \quad A \mathbf{y}=\mu \mathbf{y}
$$

Then we try to express our initial condition in terms of eigenvectors: $\mathbf{v}_{0}=a \mathbf{x}+b \mathbf{y}$. If we're successful (i.e., if the matrix A has enough eigenvectors) then we can use this to obtain a "closed form" solution to the recurrence:

$$
\begin{aligned}
\mathbf{v}_{n}=A^{n} \mathbf{v}_{0} & =A^{n}(a \mathbf{x}+b \mathbf{y}) \\
& =a A^{n} \mathbf{x}+b A^{n} \mathbf{y} \\
& =a \lambda^{n} \mathbf{x}+b \mu^{n} \mathbf{y}
\end{aligned}
$$

If the matrix doesn't have enough eigenvectors (i.e., if the matrix is not "diagonalizable") then we might be out of luck.

