
MTH 210: Intro to Linear Algebra Fall 2019
Course Notes Drew Armstrong

Linear algebra is the common denominator of modern mathematics. From the most pure to
the most applied, if you use mathematics then you will use linear algebra. It is also a relatively
new subject. Linear algebra as we know it was first systematized in the 1920s.1 Since then it
has slowly made its way into the school curriculum and is still increasing in importance every
year. In the future I expect that introductory linear algebra will be taught as a two-semester
sequence, similar to the way that we treat calculus. Until then we have to make do with just
one semester. I will do my best to show you the most important ideas.
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1 Vector Arithmetic

Before discussing linear algebra proper, we must first develop the correct language, which is
based on vectors. These, in turn, are based on the concepts of coordinate geometry, so that’s
where we’ll begin.

1.1 Cartesian Coordinates

The subject of geometry is fundamentally about points in space. But what is “space,” and
what is a “point”? Our modern understanding is based on the revolutionary ideas of René
Descartes and Pierre de Fermat from the early 1600s.

The Idea of Coordinate Geometry

A point is an ordered list of numbers.

Apparently Descartes was lying in bed one morning when he saw a fly buzzing in the corner:
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He realized that the position of the fly could be uniquely specified by measuring the (perpen-
dicular) distance to the two walls and the floor. We can visualize this as a rectangular box
with dimensions a, b, c. If we arrange these numbers in some fixed order (say a is the distance
to wall 1, b is the distance to wall 2 and c is the distance to the floor), then we can say that

pa, b, cq “ “the (Des)Cartesian coordinates of the fly.”

In this course we prefer to express Cartesian coordinates as a vertical column:2

v “

¨

˝

a
b
c

˛

‚

Such a column v is called a vector, and we say that a, b, c are the coordinates of the vector.
By allowing negative coordinates we can specify the position of any point in space. The point
with all coordinates equal to zero is called the origin of the coordinate system:

0 “

¨

˝

0
0
0

˛

‚.

///

But this is more than just a notation because it suggests new things that we can do with
points. For example, we can “add” them.

2Remark: In the notes I will use a boldface font for vectors. On the whiteboard I will use the notation
v “ ~v, since I am not good at drawing boldface letters.
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Addition of Points in the Plane

Given vectors u “ pu1, u2q and v “ pv1, v2q we define them sum as follows:3

u` v “

ˆ

u1
u2

˙

`

ˆ

v1
v2

˙

:“

ˆ

u1 ` v1
u2 ` v2

˙

.

That is, we add two vectors by adding their respective components.

This definition is completely natural in terms of numbers, but what does it mean in terms of
geometry? First let us draw the two points in the Cartesian plane (note that I have labeled
the two axes arbitrarily):

If we draw the point u ` v then we observe that the four points 0,u,v and u ` v lie at the
four vertices of a parallelogram:

3Since column vectors take up lots of vertical space I will sometimes write them as a horizontal list separated
by commas.
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We will formalize this observation by calling it the “parallelogram law.”

The Parallellogram Law

Let u and v be any two vectors.4 Then the four points 0, u, v and u`v are the vertices
of a parallelogram.

2D Example: Let u “ p´2, 2q and v “ p2, 0q. We compute the sum as follows:

u` v “

ˆ

´2
2

˙

`

ˆ

2
0

˙

“

ˆ

´2` 2
2` 0

˙

“

ˆ

0
2

˙

.

And here is the picture:

4These vectors could have two or three coordinates. Later we will allow them to have n coordinates and
pretend the the parallelogram lives in “n-dimensional space.”
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3D Example: The parallelogram law also works in 3D. Let u “ p0, 0, 2q and v “ p2, 3, 0q, so
that u` v “ p2, 3, 2q. Here is the picture:

Do you see the 2D parallelogram living in 3D space? (Actually, it is a rectangle.)

We will assume that the parallelogram law holds for vectors with any number n of coordinates,
even though we can’t draw a picture of n-dimensional space when n ě 4.
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1.2 Points vs. Directed Line Segments

The parallelogram law suggests that there is more to a vector than just the point that it
represents. Sometimes we choose to view the vector v “ pv1, v2q as a directed line segment.
The subtle thing about this point of view is that we are allowed to pick up the directed
line segment and move it, as long as we don’t change its length or direction:

It will take a while for you to internalize this idea, so I will repeat myself frequently. The
reason that we want to move vectors is because it allows us to give a purely geometric definition
of vector addition.

Addition of Directed Line Segments

Let u and v be directed line segments. To compute u`v we first move v so that its tail
coincides with the head of u. Then u ` v is defined as the directed line segment from
the tail of u to the head of v. In other words:

directed line segments add head-to-tail.

Here is a picture:
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It turns out that the geometric definition of vector addition (head-to-tail) agrees with the
algebraic definition (componentwise addition) because of the parallelogram law:

This picture also demonstrates that u ` v “ v ` u. In other words, the addition of directed
line segments is commutative. The advantage of this idea is that we can add many vectors
together without worrying about the coordinate system. For example:

Because of commutativity, adding the vectors a,b, c,d, e in any order (there are 5! “ 120
different ways to do this) always gives the same vector f . [Remark: One must also check
that addition of vectors is associative: u ` pv `wq “ pu ` vq `w. You will do this on the
homework.] This picture would be a mess if we had to keep track of all the coordinates.

In fact, we can draw the same kind of picture for vectors in any number of dimensions. I
didn’t mention it at the time, but the vectors a,b, c,d, e above live in four-dimensional space.
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1.3 Subtraction of Vectors

What about subtraction of vectors? Let u and v be vectors with the same number of coor-
dinates. Which vector w deserves to be called “u ´ v”? Whatever this vector is, it should
definitely satisfy the equation

v `w “ u.

Therefore we have the following picture:

Here is the official definition.

Subtraction of Vectors

Let u “ pu1, u2, . . . , unq and v “ pv1, v2, . . . , vnq be vectors of the same dimension. In
terms of algebra we define

u´ v “

¨

˚

˚

˚

˝

u1
u2
...
un

˛

‹

‹

‹

‚

´

¨

˚

˚

˚

˝

v1
v2
...
vn

˛

‹

‹

‹

‚

:“

¨

˚

˚

˚

˝

u1 ´ v1
u2 ´ v2

...
un ´ vn

˛

‹

‹

‹

‚

.

In terms of geometry, we place the directed line segments u and v “tail-to-tail.” Then
u´ v is the directed line segment from the head of v to the head of u:

These two definitions agree because of the parallelogram law.
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But there is one more way to think about subtraction. For any directed line segment v we let
“´v” denote the directed line segment with the same length, but opposite direction:

Then we can think of “u minus v” as “u plus the opposite of v”:

u´ v “ u` p´vq.

Of course we are allowed to pick up any of these vectors and move them around. We observe
that everything fits together very nicely:

At first it seems confusing that there are so many different ways to think about vectors. But
this is actually the reason why linear algebra is so useful. When in doubt, here is a useful
mnemonic.

Mnemonic: Head Minus Tail

(any vector) “ (its head) ´ (its tail)
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Indeed, the following picture demonstrates that for any three points u,v,x, the vector from
v to u is equal to the vector from x` v to x` u:

1.4 The Pythagorean Theorem

The subject of geometry deals with distances and angles. For any vector v in the plane we
denote its length with double5 absolute value signs:

}v} :“ the length of the directed line segment v.

In the plane we can easily compute this length using the Pythagorean Theorem. Suppose that
v “ pv1, v2q in Cartesian coordinates. By definition this means that we have a right triangle:

5I guess these are supposed to be “blackboard boldface” absolute value symbols.
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Therefore the Pythagorean Theorem tells us that

}v}2 “ v21 ` v
2
2

and hence

}v} “
b

v21 ` v
2
2.

Using vector subtraction, this same formula allows us to compute the distance between any
two points in the plane. Consider any points u “ pu1, u2q and v “ pv1, v2q. Then we have

(distance between u and v) “ (length of the line segment from u to v)

“ }v ´ u}

“
a

pv1 ´ u1q2 ` pv2 ´ u2q2.

What about in three dimensions? We can think of the vector v “ pv1, v2, v3q as the directed
line segment between two opposite corners of a rectangular box:

In order to compute the length }v} we will also draw the line segment from p0, 0, 0q to pv1, v2, 0q.
Then we obtain two right triangles:
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Applying the Pythagorean Theorem to each triangle separately gives

d2 “ v21 ` v2,

}v}2 “ d2 ` v23,

and hence

}v}2 “ d2 ` v3

“ pv21 ` v
2
2q ` v

2
3

“ v21 ` v
2
2 ` v

2
3.

We can view this as a three dimensional analogue of the Pythagorean Theorem. What about
higher dimensions? If v “ pv1, v2, v3, v4q is a directed line segment in “four dimensional space,”
is it true that

}v} “
b

v21 ` v
2
2 ` v

2
3 ` v

2
4 ?

Sure, why not? Whether “four dimensional space” really exists or not, the mathematical
concept of distance is easy to work with, so we just go ahead and define it.

Length and Distance in General

For any vector v “ pv1, v2, . . . , vnq we define its length as follows:

}v} :“
b

v21 ` v
2
2 ` ¨ ¨ ¨ ` v

2
n.

Then for any points u “ pu1, u2, . . . , unq and v “ pv1, v2, . . . , vnq we define the distance
between them as the length of the line segment v ´ u:

(distance between u and v) :“ }v ´ u} “
a

pv1 ´ u1q2 ` ¨ ¨ ¨ ` pvn ´ unq2.
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Since the orientation of the line segment doesn’t matter, we also have

}v ´ u} “ }u´ v} “
a

pu1 ´ v1q2 ` ¨ ¨ ¨ ` pun ´ vnq2.

We will see later that points in higher dimensional space can be used to represent data sets
or sequences of observations. The distance between two data sets represents the amount of
difference between them. The technique of least squares regression in statistics is based on
minimizing the distance between points in higher dimensional space.

1.5 The Dot Product

And what about angles? Let u and v be any two vectors in n-dimensional space. By placing
them tail-to-tail these two vectors determine a 2-dimensional slice of n-dimensional space.
Here is a picture:

Inside this 2-dimensional slice we can measure the angle between the vectors. Actually, there
are two angles θ and ψ with θ ` ψ “ 360˝. It doesn’t really matter which angle we choose
because the cosines are the same: cos θ “ cosψ.

In order to compute the angle θ, let us draw the triangle of vectors with sides u, v and u´v:
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The law of cosines gives the following relationship between the side lengths and the angle θ:

}u´ v}2 “ }u}2 ` }v}2 ´ 2}u}}v} cos θ.

On the other hand, we can compute the length }u ´ v} in terms of Cartesian coordinates.
For example, suppose we are working in 2D space with u “ pu1, u2q and v “ pv1, v2q. Then
applying our formula for the distance between points gives

}u´ v}2 “ pu1 ´ v1q
2 ` pu2 ´ v2q

2

“ pu21 ´ 2u1v1 ` v
2
1q ` pu

2
2 ´ 2u2v2 ` v

2
2q

“ pu21 ` u
2
2q ` pv

2
1 ` v

2
2q ´ 2pu1v1 ` u2v2q.

We can simplify this formula a bit by substituting u21`u
2
2 “ }u}

2 and v21`v
2
2 “ }v}

2 to obtain

}u´ v}2 “ }u}2 ` }v}2 ´ 2pu1v1 ` u2v2q.

By comparing the two boxed equations we conclude that

}u}}v} cos θ “ u1v1 ` u2v2.

This is a rather strange formula. It relates the geometric concepts of length and angle on
the left to a surprising computation on the right involving the Cartesian coordinates. This
formula was discovered in the 1840s by the Irish mathematician and physicist William Rowan
Hamilton, but his notation was a bit metaphysical. In the 1880s, the scientists Josiah Willard
Gibbs and Oliver Heaviside distilled the most useful ideas from Hamilton and they defined
the modern language of vectors. Here is their most important definition.

Definition of the Dot Product

For any vectors u “ pu1, u2, . . . , unq and v “ pv1, v2, . . . , vnq we define the dot product:

u ‚ v :“ u1v1 ` u2v2 ` ¨ ¨ ¨ ` unvn.

Note that this operations takes a pair of vectors u and v to a single number u ‚v (called
a scalar). For this reason the dot product is sometimes also called the scalar product.6 It
is worth noting that the length of a vector can be expressed in terms of the dot product:

}u} “
a

u21 ` u
2
2 ` ¨ ¨ ¨ ` u

2
n “

?
u ‚ u

}u}2 “ u21 ` u
2
2 ` ¨ ¨ ¨ ` u

2
n “ u ‚ u.

This definition allows us to state the following theorem.

6Sometimes it is also called the inner product of vectors. We will see why later when we discuss the outer
product of vectors.
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Theorem (The Angle Between Two Vectors)

If θ is the angle between the vectors u and v (measured in the two-dimensional plane
that they share), then the same argument as above can be used to show that7

u ‚ v “ }u}}v} cos θ.

It follows from this that the vectors u and v are perndicular (written u K v) if and only
if the dot product is zero:8

u K v ðñ cos θ “ 0 ðñ u ‚ v “ 0.

Finally, we can use this formula to solve for (the cosine of) the angle θ in terms of the Cartesian
coordinates of u and v:

cos θ “
u ‚ v

}u}}v}
“

u1v1 ` u2v2 ` ¨ ¨ ¨ ` unvn
a

u21 ` ¨ ¨ ¨ ` u
2
n ¨

a

v21 ` ¨ ¨ ¨ ` v
2
n

.

Let’s see some examples.

2D Example: Compute the angle θ between the vectors u “ p2, 3q and v “ p5, 2q:

We apply the dot product formula to obtain

cos θ “
u ‚ v

}u}}v}
“

2 ¨ 5` 3 ¨ 2
?

22 ` 32 ¨
?

52 ` 22
“

16
?

13 ¨
?

29
“ 0.824

7Occasionally you will see a textbook that uses the formula u ‚ v “ }u}}v} cos θ as the definition of the
dot product. I don’t like that.

8Here we assume that u ‰ 0 and v ‰ 0 so that }u}}v} ‰ 0. I guess we could say that the zero vector is
perpendicular to every vector.
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and hence
θ “ arccosp0.824q “ 34.5˝ or 325.5˝.

Based on our picture we choose the smaller angle. ///

1D Example: It might seem a bit silly, but we should make sure that we understand the
formula u ‚ v “ }u}}v} cos θ in very simple case when n “ 1.

Let u “ puq be any “1-dimensional vector,” also known as a “real number.” Observe that the
length of u is the same as the absolute value of u:

}u}2 “ u2

}u} “
?
u2 “ |u|.

Indeed, this is why we use the absolute value sign for the length of a vector. If v “ pvq is any
other number, observe that the dot product of u and v is just the product of numbers:

u ‚ v “ uv.

If θ is the angle between u “ puq and v “ pvq then we conclude that

uv “ |u||v| cos θ.

Does this make any sense? Sure. The only possible values for θ are 0˝ (when u and v have the
same sign) and 180˝ (when u and v have opposite signs). Since cosp0˝q “ 1 and cosp180˝q “ ´1
we have the following rule for the product of real numbers:

uv “

#

|u||v| if u and v have the same sign,

´|u||v| if u and v have opposite signs.

This is correct, and interesting. ///

3D Example: The Tetrahedral Angle. Every chemistry textbook quotes θ “ 109.5˝ as
the angle between two hydrogen atoms in a molecule of methane (or any other molecule with
tetrahedral symmetry):
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Why is this the correct answer?

In order to minimize energy, the four hydrogen atoms sit at the vertices of a regular tetrahedron
centered on the carbon atom. Let’s place the carbon atom at the origin 0 “ p0, 0, 0q. Then
what are the coordinates of the hydrogen atoms? First let me observe that the eight points
p˘1,˘1,˘1q form the vertices of a cube centered at the origin:

By choosing four alternate vertices, we obtain a regular tetrahedron centered at 0. There are
two choices and it doesn’t matter which one we pick. For example, let’s place the hydrogen
atoms at p´1, 1, 1q, p1,´1, 1q, p1, 1,´1q and p´1,´1,´1q:
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Since the angle between any two hydrogen atoms is the same, we can can pick two at random,
say u “ p´1, 1, 1q and v “ p1,´1, 1q. Then the dot product formula gives

cos θ “
u ‚ v

}u}}v}
“

p´1q ¨ 1` 1 ¨ p´1q ` 1 ¨ 1
a

p´1q2 ` 12 ` 12 ¨
a

11 ` p´1q2 ` 12
“

´1
?

3 ¨
?

3
“
´1

3
,

and it follows that

θ “ arccos

ˆ

´1

3

˙

“ 109.4712206 ¨ ¨ ¨ degrees.

///

4D Example: Compute the angle in the following picture:9

In order to compute the dot product u ‚ v we must first translate the vectors u and v into
standard position. For this purpose, we subtract p0, 1, 1, 0q from all three points to obtain

9Note that the three points of the triangle live in a 2D slice of 4D space. The angle is defined inside this 2D
slice.
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Then we compute

u ‚ v “

¨

˚

˚

˝

1
1
2
2

˛

‹

‹

‚

‚

¨

˚

˚

˝

´1
1
0
1

˛

‹

‹

‚

“ 1 ¨ p´1q ` 1 ¨ 1` 2 ¨ 0` 2 ¨ 1 “ 2,

}u}2 “

¨

˚

˚

˝

1
1
2
2

˛

‹

‹

‚

‚

¨

˚

˚

˝

1
1
2
2

˛

‹

‹

‚

“ 12 ` 12 ` 22 ` 22 “ 10,

}v}2 “

¨

˚

˚

˝

´1
1
0
1

˛

‹

‹

‚

‚

¨

˚

˚

˝

´1
1
0
1

˛

‹

‹

‚

“ p´1q2 ` 12 ` 02 ` 12 “ 3.

Plugging these into the theorem gives

cos θ “
u ‚ v

}u}}v}
“

2
?

10 ¨
?

3
“ 0.365

and hence
θ “ arccosp0.365q “ 68.6˝.

1.6 The Concept of a Vector Space

In the previous sections we developed the basic properties of geometry in terms of Cartersian
coordinates. From the modern point of view, we take these formulas as the definition of
(Euclidean)10 geometry.

Definition of Euclidean Space

Recall that R denotes the set of real numbers. We define Rn as the set of ordered n-tuples
of real numbers, thought of as column vectors:

Rn :“

$

’

&

’

%

x “

¨

˚

˝

x1
...
xn

˛

‹

‚

: x1, . . . , xn P R

,

/

.

/

-

.

10There exist non-Euclidean geometries, such as the Lorentzian geometry which is used in Einstein’s theory
of relativity.
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For any two column vectors x,y P R2 we define their dot product as follows:

x ‚ y “

¨

˚

˝

x1
...
xn

˛

‹

‚

‚

¨

˚

˝

y1
...
yn

˛

‹

‚

:“ x1y1 ` ¨ ¨ ¨ ` xnyn.

We define the length }x} P R so that the generalized Pythagorean Theorem holds:

}x}2 “ x ‚ x “ x21 ` ¨ ¨ ¨ ` x
2
n.

Then the angle θ between x and y satisfies the following equation, which is analogous to
the law of cosines:

cos θ “
x ‚ y

}x}}y}
“

x ‚ y
?

x ‚ x ¨
?

y ‚ y

The set Rn together with the dot product function ‚ : RnˆRn Ñ R is called n-dimensional
Euclidean space.

There is one further algebraic operation that we can define on vectors. For any vector v “
pv1, . . . , vnq P Rn we have defined

´v “ ´

¨

˚

˝

v1
...
vn

˛

‹

‚

“

¨

˚

˝

´v1
...
´vn

˛

‹

‚

and we have observed that ´v is the vector with the same length as v, but with opposite
direction. More generally, we make the following definition.

Definition of Scalar Multiplication

Let v “ pv1, . . . , vnq P Rn be any n-dimensional vector and let t P R be any real number,
called a scalar. Then we define the vector tv P Rn as follows:

tv “ t

¨

˚

˝

v1
...
vn

˛

‹

‚

:“

¨

˚

˝

tv1
...
tvn

˛

‹

‚

.

What is the geometric meaning of this operation? We observe that the length of tv satisfies

}tv} “
a

ptv1q2 ` ¨ ¨ ¨ ` ptvnq2 “
b

t2pv21 ` ¨ ¨ ¨ ` v
2
nq “

?
t2 ¨

b

v21 ` ¨ ¨ ¨ ` vn “ |t|}v|.

21



In other words, multiplying a vector v P Rn by a number t P R “scales its length” by the factor
|t|. This is why we call numbers scalars. The direction of tv is the same as v when t ą 0 and
it is opposite to v when t ă 0. The concept of scalar multiplication is easier to understand if
you visualize the set of points ttv : t P Ru as the infinite line generated by the vector v:

We say that this line is “parametrized by t.” I would even call it the “t-axis.” Now we have
three different algebraic operations related to vectors:11

• Addition ` : Rn ˆ Rn Ñ Rn takes a (vector,vector) pair to a vector.

• Scalar multiplication ¨ : Rˆ Rn Ñ Rn takes (scalar,vector) pair to a vector.

• The dot product ‚ : Rn ˆ Rn Ñ R takes a (vector,vector) pair to a scalar.

It is worth recording all of the abstract properties that these operations must satisfy.

Properties of Vector Arithmetic

For any vectors u,v,w P Rn and for any scalars a, b P R we have

• u` v “ v ` u

• u` pv `wq “ pu` vq `w

• u` 0 “ u

• 0u “ 0

• 1u “ u

• apbuq “ pabqu

11For any sets S and T , the notation S ˆ T denotes the set of ordered pairs ps, tq with s P S and t P T . It
has nothing to do with vector multiplication.
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• apu` vq “ au` av

• pa` bqu “ au` bu

• u ‚ v “ v ‚ u

• u ‚ pv `wq “ u ‚ v ` u ‚w

• apu ‚ vq “ pauq ‚ v “ u ‚ pavq

These properties are mostly obvious so we won’t bother proving them.12 Instead, here is an
example showing how to use the rules.

?D Example: Let x and y be any two vectors satisfying

x ‚ x “ y ‚ y “ 1 and x ‚ y “ 0.

(I won’t tell you the dimension of these vectors because it doesn’t matter.) Compute the angle
between the vectors u “ x` 2y and v “ 3x` y.

Solution 1: We can solve this problem without thinking by applying the rules of vector
arithmetic. First we compute the dot products u ‚ u, v ‚ v and u ‚ v:

u ‚ u “ px` 2yq ‚ px` 2yq “ x ‚ x` 4x ‚ y ` 4y ‚ y “ 1` 4 ¨ 0` 4 ¨ 1 “ 5,

v ‚ v “ p3x` yq ‚ p3x` yq “ 9x ‚ x` 6x ‚ y ` y ‚ y “ 9 ¨ 1` 6 ¨ 0` 1 “ 10,

u ‚ v “ px` 2yq ‚ p3x` yq “ 3x ‚ x` 7x ‚ y ` 2y ‚ y “ 3 ¨ 1` 7 ¨ 0` 2 ¨ 1 “ 5.

If θ is the angle between u and v then it follows that

cos θ “
u ‚ v

?
u ‚ u ¨

?
v ‚ v

“
5

?
5 ¨
?

10
“

1
?

2

and hence

θ “ arccos

ˆ

1
?

2

˙

“ 45˝.

Solution 2: Or we can draw a picture. The identities x ‚ x “ y ‚ y “ 1 tell me that
}x} “ }y} “ 1 and the identity x ‚ y “ 0 tells me that x and y are perpendicular. We say
that x and y are perpendicular unit vectors. Here is a picture:

12You will prove the identity u` pv `wq “ pu` vq `w on the homework.
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(This picture might live in 10-dimensional space. It doesn’t matter.) Now we can add the
vectors u “ x` 2y and v “ 3x` y to our picture:

From this point of view we see that the angle between u and v is the same as the angle
between the vectors p1, 2q and p3, 1q in the Cartesian plane. It follows that

cos θ “
p1, 2q ‚ p3, 1q

}p1, 2q}}p3, 1q}
“

1 ¨ 3` 2 ¨ 1
?

12 ` 22 ¨
?

32 ` 11
“

5
?

5 ¨
?

10
“

1
?

2
,

and we get the same answer θ “ 45˝. The key idea here is to treat the vectors x and y as the
“basis for a coordinate system.” Then we might as well express any vector ax` by using the
following notation:

ax` by “

ˆ

a
b

˙

.

Since the basis vectors x and y are perpendicular and have length 1 (we say that they form
an “ortho-normal basis”) it turns out that any computation using this language will give the
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correct answer. For example:13

u ‚ v “ px` 2yq ‚ p3x` yq “

ˆ

1
2

˙

‚

ˆ

3
1

˙

“ 1 ¨ 3` 2 ¨ 1 “ 5.

///

The point of view in this example is rather abstract. There are two reasons that we might want
to work with an abstract coordinate system such as x and y instead of the usual Cartesian
coordinates:

• Some objects, such as a 1D line or a 2D plane in 3D space, do not come with a standard
coordinate system. In this case we have to introduce our own coordinate system. We
will see many examples of this in the next chapter.

• In the twentieth century, mathematicians observed that there are structures other than
Cartesian space that obey the same rules of vector arithmetic. (We call these abstract
vector spaces.) For example, in the theory of probability we can think of random variables
as “vectors” and we can think of covariance as the “dot product.” For another example,
the subject of signal processing is based on the idea of treating a signal as some kind of
“vector.” If fptq represents the amplitude of a signal at time t, then the “dot product”
between two signals fptq and gptq is defined by the integral

ż

fptqgptq dt.

These kinds of abstract vector spaces do not come with a built-in coordinate system; if
you want to work in coordinates then you have to define your own.14 We won’t purse
exotic kinds of vector spaces in this course, but you should be aware that they exist and
that they follow the same general theory.

1.7 Exercises with Solutions

1.A. Define the standard basis vectors e1 “ p1, 0, 0q, e2 “ p0, 1, 0q and e3 “ p0, 0, 1q.

(a) Draw the cube with the following 8 vertices:

0, e1, e2, e3, e1 ` e2, e1 ` e3, e2 ` e3, e1 ` e2 ` e3.

(b) Draw the triangle in 3D with corners at e1, e2, e3. Compute the side lengths and the
angles of this triangle by using the dot product.

13Remark: If the basis vectors x and y are not ortho-normal then addition and scalar multiplication are still
correct, but the dot product will give the wrong answer.

14In the theory of signal processing it is common to use the “pure sine waves” sinptq, sinp2tq, sinp3tq, . . . and
cosptq, cosp2tq, cosp3tq, . . . as a coodinate system.
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(a) Observe that the cube is made out of many parallelograms (actually, they are squares):

(b) Now consider the dotted triangle with vertices e1, e2, e3. Since each side of the triangle
is the diagonal of a unit square, we conclude from the Pythagorean Theorem that each side
has length

?
2. Then since all three sides of the triangle have the same length, we conclude

that the three interior angles are equal, i.e., each is 60˝. Let’s check this result using the dot
product.

Let u and v be the vectors with tails at e1 and heads at e2 and e3, respectively. In order
to compute the dot products u ‚ u, v ‚ v and u ‚ v we translate these vectors into standard
position by subtracting e1 from all three points:
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Using the fact that up´1, 1, 0q and v “ p´1, 0, 1q gives

u ‚ u “ p´1q2 ` 12 ` 02 “ 2,

v ‚ v “ p´1q2 ` 02 ` 12 “ 2,

u ‚ v “ p´1qp´1q ` 1 ¨ 0` 0 ¨ 1 “ 1.

We conclude that }u} “ }v} “
?

2 and

cos θ “
u ‚ v

?
u ‚ u ¨

?
v ‚ v

“
1

?
2 ¨
?

2
“

1

2
,

which implies θ “ arccosp1{2q “ 60˝. Alternatively, we can use vector arithmetic and the fact
that the standard basis vectors satisfy

ei ‚ ej “

#

1 if i “ j,

0 if i ‰ j.

Then since u “ e2 ´ e1 and v “ e3 ´ e1 we have

u ‚ u “ pe2 ´ e1q ‚ pe2 ´ e1q “ e2 ‚ e2 ´ 2e1 ‚ e2 ` e1 ‚ e1 “ 1´ 2 ¨ 0` 1 “ 2,

v ‚ v “ pe3 ´ e1q ‚ pe3 ´ e1q “ e3 ‚ e3 ´ 2e1 ‚ e3 ` e1 ‚ e1 “ 1´ 2 ¨ 0` 1 “ 2,

u ‚ v “ pe2 ´ e1q ‚ pe3 ´ e1q “ e2 ‚ e3 ´ e1 ‚ e2 ´ e1 ‚ e3 ` e1 ‚ e1 “ 0´ 0´ 0` 1 “ 1.

The computations for the other two angles are similar, so we omit them.

1.B. Let u “ p1, 2q and v “ p3, 1q.

(a) Draw the points u and v together with the points

1

2
u`

1

2
v,

1

4
u`

3

4
v,

1

4
u`

1

4
v, u` v.

(b) Draw the infinite line ttv` tuu where t is any real number. [Hint: It is enough to draw
two points on this line and then use a ruler.]

(c) Draw the infinite line tsu` p1´ sqvu where s is any real number. [Hint: Same as (b).]

(d) Shade the finite region of the plane defined by tsu` tv : 0 ď s ď 1, 0 ď t ď 1u.

(e) Shade the infinite region of the plane defined by tsu` tv : 0 ď s, 0 ď tu.

(a) First we observe that the points 0, u, v and u`v are the four vertices of a parallelogram.
Next let me observe that

1

2
u`

1

2
v “

1

2
pu` vq “

u` v

2
.
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We can view this as the fourth vertex of the parallelogram with vertices 0, u{2 and v{2. Or
we can view it as half of the vector u ` v. Or we can view it at the midpoint (the center of
mass) of the two points u and v. More generally, the midpoint of any two points x,y P Rn

is px ` yq{2. (Can you explain why?) It follows that 1
4u ` 1

4v “ 1
4pu ` vq is the midpoint

between 0 and 1
2pu` vq, and 1

4u` 3
4v is the midpoint between 1

2u` 1
2v and v:

pu{2` v{2q ` v

2
“

u{2` 3v{2

2
“

1

2

ˆ

1

2
u`

3

2
v

˙

“
1

4
u`

3

4
v.

Here is the picture:

(b) I have drawn the line tu ` tv “ tpu ` vq in the picture above. The line passes through
the points 0, pu` vq{4, pu` vq{2 and u` v, in that order.

(c) I have drawn the line su ` p1 ´ sqv in the picture above. This line passes through the
points v, u{4 ` 3v{4, u{2 ` v{2 and u, in that order. We can also think of this as the line
v ` spu ´ vq that starts at the point v when s “ 0 and then moves in the direction of the
vector u´ v as s increases.

(d) The set of points tsu` tv : 0 ď s ď 1, 0 ď t ď 1u is the filled parallelogram with vertices
at 0, u, v and u` v:
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We call this the “parallelogram spanned by u and v.”

(e) The set of points tsu` tv : 0 ď s, 0 ď tu is the “cone” spanned by u and v:

We can think of this as the “first quadrant” of the coordinate system defined by u and v.
This coordinate system is a bit squished.

1.C. Let u and v be any two vectors of length 2. Compute the following dot products:

(a) u ‚ p´uq

(b) pu` vq ‚ pu´ vq

(c) pu` 2vq ‚ pu´ 2vq

(d) Explain why you do not have enough information to compute pu´ vq ‚ pu´ vq.

(a) Since u has length 2 we know that u ‚ u “ }u}2 “ 4 and hence

u ‚ p´uq “ u ‚ pp´1quq “ p´1qu ‚ u “ ´4.
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(b) Since v has length 2 we also know that v ‚ v “ }v}2 “ 4 and hence

pu` vq ‚ pu´ vq “ u ‚ u´���u ‚ v `���u ‚ v ´ v ‚ v “ u ‚ u´ v ‚ v “ 4´ 4 “ 0.

Evidently the vectors u` v and u´ v are perpendicular. I do not know the angle between u
and v, but here is a picture:

We can regard this as a theorem that the two diagonals of a rhombus are perpendicular. [If
u and v did not have the same length, this parallelogram would not be a rhombus and its
diagonals would not be perpendicular.]

(c) We have

pu` 2vq ‚ pu´ 2vq “ u ‚ u´����2u ‚ v `����2v ‚ u´ 4v ‚ v “ u ‚ u´ 4v ‚ v “ ´12.

I cannot draw a picture of this.

(d) pu ´ vq ‚ pu ´ vq “ }u ´ v}2, where }u ´ v| is the length of the third side of an isoceles
triangle:

In terms of algebra, we have

}u´ v}2 “ u ‚ u´ u ‚ v ´ u ‚ v ` v ‚ v,

“ u ‚ u´ 2u ‚ v ` v ‚ v,

“ }u}2 ` }v}2 ´ 2u ‚ v
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“ 8´ 2u ‚ v.

We cannot compute this because were not given the dot product u ‚v. Equivalently, we were
not given the angle θ between u and v.

1.D. Lines and Planes.

(a) Let u “ p2, 1q. The following set of points is a line:

tx “ px, yq : x ‚ u “ 0u.

Draw this line and find its equation.

(b) Now let x0 “ p3, 1q and u “ p2, 1q. The following set of points is also a line:

tx0 ` tu : t P Ru.

Draw this line and find its equation.

(c) Now let u “ p1, 1, 1q. Describe the shape formed by the following set of points:

tx “ px, y, zq : x ‚ u “ 0u.

Try to draw a picture.

(d) Let u “ p1, 1, 1q and v “ p1, 2, 3q. Describe the shape of the following set of points:

tx “ px, y, zq : x ‚ u “ 0 and x ‚ v “ 0u.

Try to draw a picture.

(a) The equation x ‚ u “ 0 means that the vector x is perpendicular to the vector u. The set
of all such points x forms a line through the origin:
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The equation of this line is

x ‚ u “ 0
ˆ

x
y

˙

‚

ˆ

2
1

˙

“ 0

2x` y “ 0.

(b) The line tx0 ` tu : t P Ru contains the point x0 “ p3, 1q and is parallel to the vector
u “ p2, 1q. We can think of x0 ` tu as the position of a particle at time t. When t “ 0 the
particle is at the point x0. Then as t increases the particle travels in the direction of u at
constant velocity }u} “

?
5 units per second:

The general point on the line has the form px, yq “ p1, 3q ` tp2, 1q “ p1 ` 2t, 3 ` tq. If you
insist on expressing this line as a single equation, we can solve for t to obtain

y ´ 3 “ t “ px´ 1q{2

and hence

y ´ 3 “ px´ 1q{2

y “
1

2
x`

5

2
.

Indeed, this is the line with slope 1{2 and y-intercept 5{2.

(c) The equation x ‚ u “ 0 means that the vector x is perpendicular to the vector u. The set
of all such points x forms a 2D plane in 3D space:
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The equation of the plane is

x ‚ u “ 0
¨

˝

x
y
z

˛

‚‚

¨

˝

1
1
1

˛

‚“ 0

x` y ` z “ 0.

This is the unique plane that is perpendicular to the vector u and contains the point 0.

(d) Now consider the vector v “ p1, 2, 3q. From part (c) we know that x ‚u “ 0 and x ‚v “ 0
are the equations of the two planes that are perpendicular to u and v, respectively, and pass
through the origin 0. The set tx P R3 : x ‚u “ 0 and x ‚v “ 0u is the intersection the planes:

In other words, the set is a line. What more can we say about this line? Implicitly, we
can describe the line as the solution to the following system of two linear equations in three
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unknowns:
"

x ` y ` z “ 0,
x ` 2y ` 3z “ 0.

Explicitly, we can describe this line as the set of points ttw : t P Ru, where w is some specific
vector that is simultaneously perpendicular to u and v. How can we find such a vector? We
will discuss this in the next chapter.15

1.E. Associativity of Vector Addition. Consider three vectors in the plane:

u “ pu1, u2q, v “ pv1, v2q and w “ pw1, w2q.

(a) Use algebra to prove that u ` pv ` wq “ pu ` vq ` w. [Hint: You may assume that
addition of numbers is associative.]

(b) Draw a picture to demonstrate that u` pv `wq “ pu` vq `w.

(a) We may assume that u1` pv1`w1q “ pu1` v1q `w1 and u2` pv2`w2q “ pu2` v2q `w2.
Then it follows that

u` pv `wq “

ˆ

u1
u2

˙

`

ˆˆ

v1
v2

˙

`

ˆ

w1

w2

˙˙

“

ˆ

u1
u2

˙

`

ˆ

v1 ` w1

v2 ` w2

˙

“

ˆ

u1 ` pv1 ` w2q

u2 ` pv2 ` w2q

˙

“

ˆ

pu1 ` v1q ` w2

pu2 ` v2q ` w2

˙

“

ˆ

u1 ` v1
u2 ` v2

˙

`

ˆ

w1

w2

˙

“

ˆˆ

u1
u2

˙

`

ˆ

v1
v2

˙˙

`

ˆ

w1

w2

˙

“ pu` vq `w.

This proof was supposed to be humorous. It doesn’t really explain anything.

(b) The following proof is much more enlightening:

15If you learned about the “cross product” in your physics course, you can check that w “ uˆv “ p1,´2, 1q
is one such vector. The cross product is a useful trick for 3D calculations that was discovered by Hamilton
in 1843. I will not emphasize the cross product in this course because it does not generalize easily to higher
dimensions.
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The unlabeled arrow has two different names. What are they?

2 Systems of Linear Equations

2.1 Simultaneous of Equations

At the beginning of Chapter 1 we discussed the basic idea of coordinate geometry. By identi-
fying a “point” with an “ordered list of numbers” we obtain a dictionary between geometric
concepts and algebraic concepts. In this section we will discuss the correspondence between
“equations” and “shapes.”16

The Idea of Analytic Geometry

An ordered list of n real numbers px1, x2, . . . , xnq P Rn corresponds to a point in n-
dimensional space. If f : Rn Ñ R is any function with n inputs and 1 output and if c P R
is any real constant then the set of points px1, x2, . . . , xnq satisfying the equation

fpx1, x2, . . . , xnq “ c

forms a “shape in space.”17 The set of points satisfying a system of simultaneous equa-
tions corresponds to the “intersection of the shapes.” That is, if Hi Ď Rn is the shape
corresponding to the equation fipx1, x2, . . . , xnq “ ci, then the system of simultaneous

16The most basic version of this correspondence is called analytic geometry. The terms arithmetic geometry
and algebraic geometry would also be appropriate, but sadly these terms have technical meanings that are
beyond the scope of our course.
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equations
$

’

’

’

&

’

’

’

%

f1px1, x2, . . . , xnq “ c1,
f2px1, x2, . . . , xnq “ c2,

...
fmpx1, x2, . . . , xnq “ cm,

corresponds to the shape
H1 XH2 X ¨ ¨ ¨ XHm Ď Rn.18

That definition looks fancy because I expressed it in complete generality. The examples are
not so fancy.

2D Example: Consider the following system of two equations in two unknowns:

"

x2 ` y2 “ 4,
2x` y “ 0.

Recall that x2 ` y2 “ 4 is the equation of the circle with radius 2 centered at the origin:

Indeed, this circle is defined as the set of points x P R2 that have distance 2 from the origin:

}x} “ 2

}x}2 “ 4

x ‚ x “ 4

17Later we will observe that the shape determined by one equation in n variables is “pn´ 1q-dimensional.”
18The symbol “X” stands for intersection of sets, and the symbol “S Ď T” means that S is a subset of T .

The symbol “x P S” means that the thing x is a member of the set S.
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x2 ` y2 “ 4.

And we observed on the previous homework that the equation 2x` y “ 0 is the equivalent to
ˆ

x
y

˙

‚

ˆ

2
1

˙

“ 0.

This represents the line that contains the origin and is perpendicular to the vector p2, 1q:

By plotting the two shapes on the same set of axes, we observe that the intersection consists
of two distinct points:

To “solve the system” means to find the coordinates of these points. Since the equation
x2 ` y2 “ 4 is “nonlinear” (i.e., the variables x and y occur with exponents larger than 1)
there is no general algorithm for this. Luckily, in this example we can solve the second equation
for y to obtain y “ ´2x. Then we can substitute this into the first equation to obtain

x2 ` y2 “ 4
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x2 ` p´2xq2 “ 4

x2 ` 4x2 “ 4

5x2 “ 4

x2 “ 4{5

x “ ˘
a

4{5

“ ˘2{
?

5

Note that there are two possible x values, as expected. Finally, we substitute these two values
back into the first equation to obtain the two points of intersection:

ˆ

x
y

˙

“

ˆ

2{
?

5

´4{
?

5

˙

“
2
?

5

ˆ

1
´2

˙

or

ˆ

x
y

˙

“

ˆ

´2
?

5

4{
?

5

˙

“
´2
?

5

ˆ

1
´2

˙

///

Let me observe that each of the equations x2 ` y2 “ 4 and 2x ` y “ 0 (a circle and a line,
respectively) represents a “1-dimensional shape” in the plane, and their intersection represents
a pair of points, which is a “0-dimensional shape.” In general, any two equations fpx, yq “ c
and gpx, yq “ d in two variables should represent a pair of curves in the plane. Unless these
two curves are accidentally disjoint then they will intersect in a set of points, which is a
“0-dimensional shape”:
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To be specific:

• A system of 0 equations in 2 unknowns has a 2-dimensional solution (the whole plane).

• A system of 1 equation in 2 unknowns has a 1-dimensional solution (some kind of curve).

• A system of 2 equations in 2 unknowns probably has a 0-dimensional solution (a collec-
tion of points).

• A system of 3 or more equations in 2 unknowns probably has no solution, because the
third curve probably does not contain any of the intersection points of the first two
curves.

Let’s see what happens when there are three variables.

3D Example: Consider the following system of three equations in three unknowns:

(1)
(2)
(3)

$

&

%

x2 ` y2 ´ z “ 0,
y “ 0,
z “ 4.

The equation (1) defines a paraboloid, while each of (2) and (3) defines a plane. The intersec-
tion of (1) and (2) is the parabola z “ y2 in the yz-plane. The intersection of (1) and (3) is the
circle x2 ` y2 “ 4 in the plane z “ 4 (which is parallel to the xy-plane), and the intersection
of (2) and (3) is the line p0, 0, 4q ` tp1, 0, 0q (which is parallel to the x-axis). Finally, the
intersection of all three shapes is the pair of points p2, 0, 4q and p´2, 0, 4q. Here is a picture:
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Thus we make the following observations:

• A system of 0 equations in 3 unknowns has a 3-dimensional solution (the whole space).

• A system of 1 equation in 3 unknowns has a 2-dimensional solution (some kind of sur-
face).

• A system of 2 equations in 3 unknowns probably has a 1-dimensional solution (a curve
or a collection of curves).

• A system of 3 equations in 3 unknowns probably has a 0-dimensional solution (a collec-
tion of points).

• A system of 4 or more equations in 3 unknowns probably has no solution, because the
fourth surface probably does not contain any of the intersection points of the first three
surfaces.

These examples lead us to the following guiding principle.

The Dimension Principle

In a “generic” system of equations, each new equation should reduce the dimension of
the solution by one. If the number of equations is greater than the number of variables
then there should be no solution.

Unfortunately, this principle has many subtle exceptions. In order to make things work out as
cleanly as possible, we will restrict our attention in this course to the easiest kind of equations.
Namely: linear equations.

2.2 What is a Hyperplane?

It turns out that solving general systems of equations is extremely difficult. In this course we
will focus the easiest kind of equations.

Definition of a Linear Equation

A linear equation in n unknowns has the form

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b,

where x1, x2, . . . , xn P R are real variables and a1, a2, . . . , an, b P R are real constants.
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What kind of shape does a linear equation represent?

2D Example: The general linear equation in two unknowns has the form

ax` by “ c.

I claim that this is the equation of a line that is perpendicular to the vector a “ pa, bq. Indeed,
note that any point x “ px, yq on the line satisfies a ‚x “ c. If x0 “ px0, y0q and x1 “ px1, y1q
are any two points on the line then we find that

a ‚ px1 ´ x0q “ a ‚ x1 ´ a ‚ x0 “ c´ c “ 0,

which implies that the difference x1 ´ x0 is perpendicular to a, as in the following picture:

But how can we actually find a point on this line? First let’s try to set x “ 0 so that by “ c.
If b ‰ 0 then we find that y “ c{b and hence p0, c{bq is a point on the line. But what if b “ 0?
In this case we can try to set y “ 0, so that ax “ c. If a ‰ 0 then we conclude that x “ c{a
and hence pc{a, 0q is a point on the line. Since at least one of a and b is nonzero (otherwise
the equation ax` by “ 0x` 0y “ c is pretty boring), this method will always find a point on
the line.

But I want to find a good point on the line. Suppose that p is the point on the line that is
closest to the origin 0. The for geometric reasons we know that the line segment from 0
to p is perpendicular to the line. Equivalently, we know that the vectors p and a are parallel,
hence p “ ta “ tpa, b, cq for some scalar t. Here is a picture:
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To solve for t we let p “ px, y, zq and then substitute to get

ax` by “ c

aptaq ` bptbq “ c

tpa2 ` b2q “ c

t “ c{pa2 ` b2q.

We conclude that the closest point to the origin is19

p “ t

ˆ

a
b

˙

“
c

a2 ` b2

ˆ

a
b

˙

“

ˆ

ac{pa2 ` b2q

bc{pa2 ` b2q

˙

.

Furthermore, the minimum distance between the line and the origin is

}p} “

›

›

›

›

t

ˆ

a
b

˙›

›

›

›

“ |t|

›

›

›

›

ˆ

a
b

˙›

›

›

›

“
|c|

a2 ` b2

a

a2 ` b2 “
|c|

?
a2 ` b2

.

Here is a summary.

The Equation of a Line

Let a, b, c P R be any real numbers with a “ pa, bq ‰ p0, 0q, and let x “ px, yq be a general
point in the xy-plane. Then the equation

a ‚ x “ c

19Later we will say that the point p is the “orthogonal projection of 0 onto the line ax` by “ 0.”
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ax` by “ c

represents the line in the xy-plane that is perpendicular to the vector a and has “height
c{}a} above the origin” in the direction of a :

In particular, since }a} ‰ 0 we observe that this line passes through the origin (i.e. has
zero height above the origin) if and only if c “ 0.

3D Example: The general linear equation in three unknowns has the form

ax` by ` cz “ d.

I claim that this is the equation of a plane that is perpendicular to the vector a “ pa, b, cq.
Indeed, we can rewrite the equation as a ‚ x “ d, where x “ px, y, zq is a general point on the
line. Then for any two points x1 and x2 on the plane we have

a ‚ px1 ´ x0q “ a ‚ x1 ´ a ‚ x0 “ d´ d “ 0,

which implies that the vector x1 ´ x2 is perpendicular to a. Since this is true for any two
points on the plane it follows that the whole plane is perpendicular to a. Now let’s try to find
a good point on the plane. The closest point on the plane to the origin must have the form
p “ ta since the line segment from 0 to p must be perpendicular to the plane, and hence must
be parallel to a. Here is a picture:
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Since p “ ta is on the plane we know by definition that

a ‚ p “ d

a ‚ ptaq “ d

tpa ‚ aq “ d

t}a}2 “ d

t “ d{}a}2.

We conclude that

p “ t

¨

˝

a
b
c

˛

‚“
d

}a}2

¨

˝

a
b
c

˛

‚“

¨

˝

ad{}a}2

bd{}a}2

cd{}a}2

˛

‚,

hence the minimum distance between the plane and the origin is

}p} “

›

›

›

›

d

}a}2
a

›

›

›

›

“
|d|

}a}2
}a} “

|d|

}a}
.

Here is the general situation.

The Equation of a Hyperplane

Let a1, a2, . . . , an, b P R be any real constants with a “ pa1, a2, . . . , anq ‰ 0 and let
x “ px1, x2, . . . , xnq P Rn be a general point in Euclidean n-dimensional space. Then the
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equation

a ‚ x “ b

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b

represents a hyperplane (i.e., a flat pn ´ 1q-dimensional shape). For any two points x1

and x2 on the hyperplane we observe that

a ‚ px1 ´ x2q “ a ‚ x1 ´ a ‚ x2 “ d´ d “ 0.

It follows that the entire hyperplane is perpendicular to a. If p is the point on the
hyperplane that is closest to the origin then we must have p “ ta for some scalar t P R
and hence

t}a}2 “ tpa ‚ aq “ a ‚ ptaq “ a ‚ p “ b.

It follows that t “ b{}a}2 and hence the minimum distance between the hyperplane and
the origin is

}p} “

›

›

›

›

b

}a}2
a

›

›

›

›

“
|b|

}a}2
}a} “

|b|

}a}
.

More specifically, we observe that the hyperplane has “height b{}a} above the origin in
the direction of a.”20 Here is a picture:

20If b ă 0 then the height is negative. If a is “up” then this means that the hyperplane is “below the origin.”
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2.3 What is a Line?

We have seen that one linear equation defines a hyperplane; it does not define a line. So what
is the definition of a line?

The Definition of a Line

Let p P Rn be any point and let a P Rn be any vector in n-dimensional space. Then the
following set is called a line:

tp` ta : t P Ru Ď Rn.

Here is a picture:

We call this the line through p “in the direction of a” or (“parallel to a”). Note that
this representation is not unique because we can replace p by any point on the line and
we can replace a by any scalar multiple of a.

Unless n “ 2 there is no such this as “the equation of a line.” In fact, at least n´1 equations
are necessary to define a line in n-dimensional space. For example, consider the line
tp` ta : t P Ru where

p “ pp1, p2, . . . , pnq and a “ pa1, a2, . . . , anq.

Then the general point x “ px1, x2, . . . , xnq on the line satisfies

x “ p` ta

46



px1, x2, . . . , xnq “ pp1 ` ta1, p2 ` ta2, . . . , pn ` tanq.

We can think of this as a system of n linear equations in the n` 1 unknowns x1, x2, . . . , xn, t.
Assuming that ai ‰ 0 for all i, we can eliminate t from the system to obtain a sequence of
n´ 1 linear equations in the n unknowns x1, x2, . . . , xn:

x1 ´ p1
a1

“
x2 ´ p2
a2

“ ¨ ¨ ¨ “
xn ´ pn
an

.

Note that each of these equations defines a hyperplane. Thus we have expressed the parametrized
line p` ta as the intersection of n´ 1 hyperplanes. I do not want to draw a picture of this.

2.4 What is a d-Plane?

We say that a line is “one dimensional” because it can be described by one free parameter.
We also say that a plane is “two dimensional,” but why? Consider the following plane:

x` 2y ` 3z “ 5.

I claim that this plane can be “parametrized with two free parameters.” There are infinitely
many ways to do this so we have to make some arbitrary choices. For example, let’s arbitrarily
let s “ y and t “ z be free. (By doing this we are declaring that we never try to “solve for” y
or z.) Then we can solve for x in terms of the two free parameters:

x “ 5´ 2y ´ 3z “ 5´ 2s´ 3t.

But I prefer to express this in terms of vectors:

¨

˝

x
y
z

˛

‚“

¨

˝

5´ 2s´ 3t
s
t

˛

‚“

¨

˝

5´ 2s´ 3t
0` 1s` 0t
0` 0s` 1t

˛

‚“

¨

˝

5
0
0

˛

‚` s

¨

˝

´2
1
0

˛

‚` t

¨

˝

´3
0
1

˛

‚.

What does this mean?

Parametrization p ` su ` tv. Draw a picture. Define u “ p´2, 1, 0q, v “ p´3, 0, 1q and talk
about the u,v coordinate system.

The Idea of Dimension

The dimension of a shape is the minimum number of free parameters needed to describe
it.

Examples: Let p be any point.
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• The set tpu is 0-dimensional because it does have any free parameters.

• If u ‰ 0 then the line ttu : t P Ru is 1-dimensional.

• If the vectors u,v are non-zero and non-parallel then the plane tp` su` tv : s, t P Ru
is 2-dimensional.

• If the vectors u,v,w are non-zero and pairwise non-parallel then the set tp`ru`su`tw :
r, s, t P Ru might be a 3-dimensional space. But suppose that w “ u ` v. Then the
equation ...

Do I want to define “linear independence” right now???

Definition of a d-Plane

Let p P Rn any point and let u1,u2, . . . ,ud P Rn be a set of “linearly independent”21

vectors. Then the set of points

tp` t1u1 ` t2u2 ` ¨ ¨ ¨ ` tdud : t1, t2, . . . , td P Ru Ď Rn

forms a flat d-dimensional shape, called a d-plane. For example, a 1-plane is called a line
and a 2-plane is called a plane. An pn´ 1q-plane living in n-dimensional space is called
a hyperplane.

2.5 Systems of Linear Equations

Qualitative pictures for lines and planes. The number of solutions is 0, 1 or 8. For example,
it is impossible for a linear system to have exactly two solutions. (You will prove this on a
future homework.) More generally:

The Dimension Principle for Linear Systems

The solution to a linear system is always a d-plane for some d. (In order to include the
possibility of no solution we sometimes say that the empty solution is a “p´1q-plane.”)
Now suppose that we have a system of m linear equations in n unknowns. If m ď n then
the solution is probably an pn´mq-plane. If m ă n then the solution is probably empty.

21This means that no one vector in the set can be expressed as a linear combination of the other vectors. We
will see later that this restriction implies d ď n.
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Much of the theory of linear algebra has to do with quantifying the exceptions to this general
principle.22 If n “ 2 or n “ 3 then we can explain everything with pictures. If n ě 4 it is
impossible to visualize the system. Nevertheless, humans have a complete and satisfactory
way to work with linear systems of any dimension. How do they do it?

2.6 The Idea of Elimination

You may be familiar with the method of substitution. The method of elimination is more
general.

First example:
"

x ` y ` z “ 0,
x ` 2y ` 3z “ 0.

System of three planes meeting in a line.

System of three hyperplanes in 4D meeting in a 2-plane.

2.7 Gaussian Elimination and RREF

Time to get specific. Here is how I would teach the algorithm to my computer.

AT THIS POINT I GOT TENDONITIS FROM TYPING, SO WHAT FOLLOWS
IS ONLY A BARE OUTLINE OF THE COURSE. I WILL POST OLD HAND-
WRITTEN NOTES ON THE WEBPAGE.

3 Matrix Arithmetic

3.1 Harmless Formalism

We can simplify a linear system so it looks like Ax “ b.

¨

˚

˝

a11 ¨ ¨ ¨ a1n
...

. . .
...

am1 ¨ ¨ ¨ amn

˛

‹

‚

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

“

¨

˚

˝

a11x1 ` ¨ ¨ ¨ ` a1nxn
...

am1x1 ` ¨ ¨ ¨ ` amnxn

˛

‹

‚

22The deviations are encoded by two numbers, called the rank and nullity of the system, which are related
by a result called the Fundamental Theorem. We will discuss this in Chapter 4.
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3.2 Concept of a Linear Function

What kind of operation takes the (matrix,vector) pair A,x to the vector Ax. Note that it
generalizes multiplication of numbers and the dot product of vectors. Notation:

x ‚ y “ xTy (concept of matrix transpose)

Thus we might think of it as some kind of super general “multiplication.” But then what
about division? It is tempting to “solve” the linear system Ax “ b by writing x “ b

A . In fact,
we will do something like this. The key is to think of a matrix A as a kind of function that
sends a vector in n-dimensional space (x P Rn) to a vector in m-dimensional space (Ax P Rm).
But this is not just any function. Matrix functions satisfy the following special properties:

Apx` yq “ Ax`Ay and Apαxq “ αpAxq.

Jargon: We say that x ÞÑ Ax is a linear function. Conversely, let f : Rm Ñ Rn be any
function satisfying

fpx` yq “ fpxq ` fpyq and fpαxq “ αfpxq.

Then I claim that we can find an m ˆ n matrix A such that fpxq “ Ax. In other words:
Matrix functions and linear functions are the same concept.

Proof: Let fpejq be the jth column of A. Check that it works. ///

Here is an example of a non-linear function fpx, yq “ pxy, x2 ` y2q.

Thinking of matrices as (linear) functions raises some interesting questions.

• Some functions can be composed. How does this apply to matrix functions?

• Some functions can be inverted. How does this apply to matrix functions?

We will deal with these in the following sections.

3.3 Matrix Multiplication

Draw a diagram. Compose the arrows. If A is kˆ` and B is `ˆm then the composite function
A ˝B goes from Rm to Rk. But observe that the composition of linear functions is linear.

Proof: pA ˝Bqpx` αyq “ ApBx` αByq “ ApBxq ` αApByq “ pA ˝Bqx` αpA ˝Bqy.

It follows that A ˝B is a matrix function. In other words, there exists a kˆm matrix C such
that

Cx “ pA ˝Bqx “ ApBxq for all x P Rm.

Following the multiplication analogy we will call this matrix C “ AB “ “A times B.” How
can we compute it?

(jth column of AB) “ pABqej “ ApBejq “ A(jth column of B).
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It follows that

(i, j entry of AB) “ (ith row of A)(jth column of B).

But we can also think of matrix multiplication in terms of rows. Use the transposition operator:

(i, j entry of pABqT ) “ (j, i entry of AB)

“ (jth row of A)(ith column of B)

“ (ith row of BT )(jth column of AT )

“ (i, j entry of BTAT ).

This implies that pABqT “ BTAT , hence

(ith row of AB) “ (ith row of A)B.

The concept of matrix multiplication is quite deep because it compactifies many different ideas
into the concise notation AB. Furthermore, we can work with notation in a rather mindless
way because it satisfies many reasonable looking identities:

• ApBCq “ pABqC

• ApB ` Cq “ AB `AC

• pA`BqC “ AC `BC

[Note that these imply all our previous identities for vector arithmetic.] The main point of
departure from pre-1850 mathematics is the fact that matrix multiplication is not commuta-
tive:

AB ‰ BA.

Actually this is a strength because it allows matrices to represent operations such as the
composition of space rotations, which is not commutative. Example: Rotate the textbook
twice.

3.4 Some Examples

Identity, Reflection, Rotation, Projection. Mention determinant of 2ˆ 2 while we’re at it.

Which of these functions are invertible? What are the inverses?

3.5 Matrix Inversion

Say m ˆ n matrix A is invertible if there exists n ˆ m matrix B such that AB “ Im and
BA “ In. Draw a diagram.

A projection is not invertible because Px “ Py for x ‰ y. The same holds for any short
and wide matrix. Example: 2 ˆ 3 matrix. Intersection of two 2-planes through the origin
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in 3D contains a line.23 /// Indeed, this principle tells us that every non-square matrix is

non-invertible. How about A “

ˆ

1 1
1 2

˙

? We are looking for B “

ˆ

a b
c d

˙

such that AB “ I

and BA “ I:
ˆ

1 1
1 2

˙ˆ

a b
c d

˙

“

ˆ

1 0
0 1

˙

and

ˆ

a b
c d

˙ˆ

1 1
1 2

˙

“

ˆ

1 0
0 1

˙

.

This is 8 linear equations in 4 unknowns. You might guess that this system has no solution,
but it turns out that the left four equations are equivalent to the right four equations. (This
is mysterious; see the next section.) Solve the left 4 equations by two rounds of RREF.
Consolidate them into one round of RREF :

pA|Iq Ñ pI|Bq.

If it works then AB “ I. One can then check that BA “ I (miracle!). Example where is

doesn’t work :A “

ˆ

1 2
2 4

˙

. Why doesn’t it work? Column relation A

ˆ

2
´1

˙

“ 0 shows there

is no left inverse.

Relation to the determinant:

ˆ

a b
c d

˙´1

“
1

ad´ bc

ˆ

´a c
b ´d

˙

.

What happens in higher dimensions? There does exist such a thing as the determinant of an
nˆ n matrix but I see no need to define it today.

3.6 Secret: The Fundamental Theorem

We saw that Ax “ Ay with x ‰ y implies A has no left inverse. More concisely: If x ‰ 0 and
Ax “ 0 then A has no left inverse. Let us formalize this with the concept of a nullspace.

Nullspace / Kernel / Space of column relations

Nullity = dimension of nullspace = number of non-pivot columns in the RREF. What about
right inverses?

Column Space / Image

Rank = dimensiona of column space. Note that rank is the number of pivot columns in the
RREF. Thus we have rank(A)=# cols(A) if and only if RREF(A)=I. In this case, the equation
AC “ I has a unique solution C because each system Acj “ ej has a unique solution. We
conclude that:

• A has a left inverse if and only if nullity of A is zero.

23What about two 2-planes in 4D?
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• A has a right inverse if and only if rank equals the number of columns.

The Fundamental Theorem: rank + nullity = number of columns.

Proof: nullity = number of non-pivot columns.

Conclusion: Consider square matrices A,B.

AB “ I ñ A has right inverse

ñ A has rank = # columns

ñ A has nullity = 0 [Fundamental Theorem]

ñ A left inverse

ñ CA “ I for some matrix C.

Finally,
C “ CI “ CpABq “ pCAqB “ IB “ B.

We conclude that BA “ CA “ I. This is the simplest proof that I know that AB “ I
implies BA “ I for square matrices. Most textbooks give the false impression that this is a
straightforward result. It is not.

Obligatory list of equivalent conditions for invertibility. (Maybe not.)

4 Least Squares Regression

4.1 Projection onto a line or plane

4.2 Projection onto a subspace

4.3 The normal equation ATAx “ ATb

5 Spectral Analysis
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