Let A be an $n \times n$ matrix. We say that a number λ is an eigenvalue of A if there exists a nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=\lambda \mathbf{x}$. In this case we also say that \mathbf{x} is an eigenvector. One can show that λ if an eigenvalue if and only if $\operatorname{det}(A-\lambda I)=0 . I^{1}$

Problem 1. Let A be a square matrix and suppose that we have $A \mathbf{x}=\lambda \mathbf{x}$ and $A \mathbf{y}=\mu \mathbf{y}$ for some vectors \mathbf{x}, \mathbf{y} and scalars λ, μ.
(a) Show that $A(s \mathbf{x})=\lambda(s \mathbf{x})$ for all scalars s.
(b) Show that $A^{n}(s \mathbf{x})=\lambda^{n}(s \mathbf{x})$ for all scalars s and integers $n \geq 0$.
(c) Show that $A^{n}(s \mathbf{x}+t \mathbf{y})=\lambda^{n}(s \mathbf{x})+\mu^{n}(t \mathbf{y})$ for all scalars s, t and integers $n \geq 0$.

Problem 2. Geometry of Eigenvalues.

(a) If P is any matrix satisfying $P^{2}=P$ (for example, a projection), show that the only possible eigenvalues are 0 and 1. Explain this geometrically.
(b) If F is any matrix satisfying $F^{2}=I$ (for example, a reflection), show that the only possible eigenvalues are +1 and -1 . Explain this geometrically.
(c) Use the quadratic formula to show that $\lambda=\cos \theta \pm \sin \theta \sqrt{-1}$ are the eigenvalues of the rotation matrix:

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

For which angles θ do you get real eigenvalues? Explain this geometrically.
Problem 3. Compute all eigenvalues and eigenvectors of the following matrix:

$$
A=\left(\begin{array}{cc}
8 & -2 \\
15 & -3
\end{array}\right)
$$

Problem 4. A Dynamical System. Suppose that a sequence of vectors $\mathbf{x}_{n}=\left(x_{n}, y_{n}\right)$ is defined by the following initial condition and recurrence:

$$
\binom{x_{0}}{y_{0}}=\binom{30}{0} \quad \text { and } \quad\binom{x_{n+1}}{y_{n+1}}=\binom{x_{n} / 2+y_{n}}{x_{n} / 2} \text { for all integers } n \geq 0
$$

(a) Express the recurrence as a matrix equation $\mathbf{x}_{n+1}=A \mathbf{x}_{n}$. Then the n-th vector in the sequence is given explicitly by the matrix equation $\mathbf{x}_{n}=A^{n} \mathbf{x}_{0}$.
(b) Verify that $\mathbf{u}=(2,1)$ and $\mathbf{v}=(-1,1)$ are eigenvectors of the matrix A. [One could also find these from scratch, but I decided to give you a break.]
(c) Express the initial condition \mathbf{x}_{0} as a linear combination of eigenvectors:

$$
\mathbf{x}_{0}=s \mathbf{u}+t \mathbf{v} \text { for some scalars } s \text { and } t .
$$

(d) Use 1(c) and (a) to find an explicit formula for the vector $\mathbf{x}_{n}=A^{n}(s \mathbf{u}+t \mathbf{v})$.
(e) Use your formula from part (d) to compute the limit of the sequence:

$$
\lim _{n \rightarrow \infty} \mathbf{x}_{n} .
$$

[^0]
[^0]: ${ }^{1}$ We allow the possibility that the eigenvalue λ is complex and the eigenvector \mathbf{x} has complex entries.

