Let A be an $n \times n$ matrix. We say that a number λ is an *eigenvalue* of A if there exists a nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $A\mathbf{x} = \lambda \mathbf{x}$. In this case we also say that \mathbf{x} is an *eigenvector*. One can show that λ if an eigenvalue if and only if det $(A - \lambda I) = 0$.¹

Problem 1. Let A be a square matrix and suppose that we have $A\mathbf{x} = \lambda \mathbf{x}$ and $A\mathbf{y} = \mu \mathbf{y}$ for some vectors \mathbf{x}, \mathbf{y} and scalars λ, μ .

- (a) Show that $A(s\mathbf{x}) = \lambda(s\mathbf{x})$ for all scalars s.
- (b) Show that $A^n(s\mathbf{x}) = \lambda^n(s\mathbf{x})$ for all scalars s and integers $n \ge 0$.
- (c) Show that $A^n(s\mathbf{x} + t\mathbf{y}) = \lambda^n(s\mathbf{x}) + \mu^n(t\mathbf{y})$ for all scalars s, t and integers $n \ge 0$.

Problem 2. Geometry of Eigenvalues.

- (a) If P is any matrix satisfying $P^2 = P$ (for example, a projection), show that the only possible eigenvalues are 0 and 1. Explain this geometrically.
- (b) If F is any matrix satisfying $F^2 = I$ (for example, a reflection), show that the only possible eigenvalues are +1 and -1. Explain this geometrically.
- (c) Use the quadratic formula to show that $\lambda = \cos \theta \pm \sin \theta \sqrt{-1}$ are the eigenvalues of the rotation matrix:

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

For which angles θ do you get real eigenvalues? Explain this geometrically.

Problem 3. Compute all eigenvalues and eigenvectors of the following matrix:

$$A = \begin{pmatrix} 8 & -2\\ 15 & -3 \end{pmatrix}$$

Problem 4. A Dynamical System. Suppose that a sequence of vectors $\mathbf{x}_n = (x_n, y_n)$ is defined by the following initial condition and recurrence:

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} 30 \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} x_n/2 + y_n \\ x_n/2 \end{pmatrix}$ for all integers $n \ge 0$.

- (a) Express the recurrence as a matrix equation $\mathbf{x}_{n+1} = A\mathbf{x}_n$. Then the *n*-th vector in the sequence is given explicitly by the matrix equation $\mathbf{x}_n = A^n \mathbf{x}_0$.
- (b) Verify that $\mathbf{u} = (2, 1)$ and $\mathbf{v} = (-1, 1)$ are eigenvectors of the matrix A. [One could also find these from scratch, but I decided to give you a break.]
- (c) Express the initial condition \mathbf{x}_0 as a linear combination of eigenvectors:

 $\mathbf{x}_0 = s\mathbf{u} + t\mathbf{v}$ for some scalars s and t.

- (d) Use 1(c) and (a) to find an explicit formula for the vector $\mathbf{x}_n = A^n(s\mathbf{u} + t\mathbf{v})$.
- (e) Use your formula from part (d) to compute the limit of the sequence:

$$\lim_{n\to\infty}\mathbf{x}_n$$

¹We allow the possibility that the eigenvalue λ is complex and the eigenvector **x** has complex entries.