
Math 210 Fall 2019
Homework 5 Drew Armstrong

Problem 1. We say that P is a projection matrix if P T = P and P 2 = P .

(a) If P is a projection, show that I − P is also a projection.
(b) Show that the projections P and I − P satisfy P (I − P ) = 0.
(c) Let A be any matrix of shape m× n so that ATA is square of shape n× n. Assuming

that the inverse (ATA)−1 exists, show that P = A(ATA)−1AT is a projection matrix.
[We saw in class that this matrix projects onto the column space of A.]

(d) In the special case that A is a square and invertible, show that P = A(ATA)−1AT = I.
What does this mean?

(a) Let P be a projection matrix, so that P T = P and P 2 = P and define Q := I − P . Then
Q is also a projection matrix because

QT = (I − P )T = IT − P T = I − P = Q

and
Q2 = (I − P )2 = II − IP − PI + P 2 = I − P − P + P = I − P = Q.

(b) Continuing from (a), we have PQ = P (I − P ) = PI − P 2 = P − P = 0. (This notation
represents the matrix of zeroes. I can’t think of a better notation for it. Maybe O?)

(c) Let A be any matrix such that (ATA)−1 exists, and define P = A(ATA)−1AT . Then

P 2 = [A(ATA)−1AT ][A(ATA)−1AT ]

= A(ATA)−1(ATA)(ATA)−1AT

= A((((
(((((ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= A(ATA)−1AT = P

and

P T = [A(ATA)−1AT ]T

= (AT )T [(ATA)−1]TAT

= A[(ATA)−1]TAT

= A[(ATA)T ]−1AT

= A[AT (AT )T ]−1AT

= A[ATA]−1AT = P.

Hence P is a projection matrix. In fact, one can show that every projection matrix has this
form. (But we won’t.)

(d) Continuing from (c), suppose that A is square and A−1 exists. Then

P = A(ATA)−1AT =��
�

AA−1
��

���
�

(AT )−1AT = II = I.

Explanation: The matrix P = A(ATA)−1AT projects onto the column space of A. If A is
square and invertible then its column space is everything. We observe that

project onto everything = do nothing.



Problem 2. Consider the plane x + 2y + 2z = 0 with normal vector a = (1, 2, 2).

(a) Use the formula from 1(c) to find the 3 × 3 matrix P that projects onto the line ta.
[Hint: Just let A = a.]

(b) Use the matrix P to project the vector b = (1,−1, 1) onto the line.
(c) Find two vectors in the plane x + 2y + 2z = 0 and then use the formula from 1(c) to

find the 3× 3 matrix Q that projects onto the plane. [Hint: Let A be the 3× 2 matrix
whose columns are the two vectors that you found.]

(d) Use the matrix Q to project the vector b = (1,−1, 1) onto the plane.
(e) Finally, check that P + Q = I. Does this surprise you?

(a) If A = a is a n×1 matrix then the column space is just the line ta, and the matrix product
aTa = a • a = ‖a‖2 is just a number. The matrix that projects onto the line ta is

P = a(aTa)−1a = a(‖a‖2)−1a =
1

‖a‖2
aaT .

In the case of a = (1, 2, 2) we obtain

P =
1

9

1
2
2

(1 2 2
)

=
1

9

1 2 2
2 4 4
2 4 4

 .

(b) Then we project the vector b = (1,−1, 1) onto the line as follows:

Pb =
1

9

1 2 2
2 4 4
2 4 4

 1
−1
1

 =
1

9

1
2
2

 .

(c) Now consider the plane aTx = x + 2y + 2z = 0, which is perpendicular to the line ta
and let Q be the matrix that projects onto the plane. We know that Q = B(BTB)−1BT ,
where B =

(
u v

)
is any 3 × 2 matrix whose columns u and v span the plane. Let’s pick

u = (−2, 1, 0) and v = (−2, 0, 1).1 Then we have

BTB =

(
−2 1 0
−2 0 1

)−2 −2
1 0
0 1

 =

(
5 4
4 5

)
,

and hence2

(BTB)−1 =

(
5 4
4 5

)−1

=
1

9

(
5 −4
−4 5

)
.

Finally, we compute

Q = B(BTB)−1BT =

−2 −2
1 0
0 1

 1

9

(
5 −4
−4 5

)(
−2 1 0
−2 0 1

)
=

1

9

 8 −2 −2
−2 5 −4
−2 −4 5

 .

(d) We project the vector b = (1,−1, 1) onto the plane as follows:

Qb =
1

9

 8 −2 −2
−2 5 −4
−2 −4 5

 1
−1
1

 =
1

9

 8
−11

7

 .

1These are the vectors you get by letting y = s and z = t be parameters.
2Use Gaussian elimination if you need to.



(e) We observe that Pb + Qb = b. Indeed, the same identity would hold for any vector b
since the four points b, Pb, Qb,0 lie at the vertices of a rectangle. It follows that P + Q is
the identity matrix. Remark: We could have used this as a shortcut to compute Q. See the
next problem.

Problem 3. Shortcut. Let a = (1, 2,−1, 1) and consider the following hyperplane in R4:

aTx = 1x1 + 2x2 − 1x3 + 1x4 = 0.

(a) Use 1(c) to compute the matrix P that projects onto the line ta.
(b) We could also use 1(c) to compute the matrix Q that projects onto the hyperplane,

but this would take too long. Instead, use the shortcut formula Q = I − P .
(c) Project the point (1, 2, 3, 4) onto the hyperplane.

(a) The matrix that projects onto the line is

P =
1

‖a‖2
aaT =

1

7


1
2
−1
1

(1 2 −1 1
)

=
1

7


1 2 −1 1
2 4 −2 2
−1 −2 1 −1
1 2 −1 1

 .

(b) The matrix that projects onto the hyperplane is

Q = I − P =
1

7


7 0 0 0
0 7 0 0
0 0 7 0
0 0 0 7

− 1

7


1 2 −1 1
2 4 −2 2
−1 −2 1 −1
1 2 −1 1

 =
1

7


6 −2 1 −1
−2 3 2 −2
1 2 6 1
−1 −2 1 6



(c) We project the point b = (1, 2, 3, 4) onto the hyperplane as follows:

Qb =
1

7


6 −2 1 −1
−2 3 2 −2
1 2 6 1
−1 −2 1 6




1
2
3
4

 =
1

7


1
2
27
22

 .

Problem 4. Find the best fit line C + tD = b for the data points(
t
b

)
=

(
−1
3

)
,

(
0
2

)
,

(
1
2

)
,

(
2
1

)
,

using the following steps:

(a) Write down the matrix equation Ax = b that would be true if all four points were
on the same line C + tD = b. This equation has no solution.

(b) Now write down the normal equation ATAx̂ = ATb and solve it to find the least
squares approximation x̂ = (C,D).

(c) Compute the error vector e = b−Ax̂.
(d) Finally, draw the four data points along with their best fit line. Label the vertical

errors with the entries of the error vector e.



(a) Here is the unsolvable equation Ax = b:
C − 1D = 3
C + 0D = 2
C + 1D = 2
C + 2D = 1

 ⇔


1 −1
1 0
1 1
1 2

(CD
)

=


3
2
2
1


(b) The (solvable) normal equation is ATAx̂ = ATb:

(
1 1 1 1
−1 0 1 2

)
1 −1
1 0
1 1
1 2

(CD
)

=

(
1 1 1 1
−1 0 1 2

)
3
2
2
1


(

4 2
2 6

)(
C
D

)
=

(
8
1

)
(
C
D

)
=

1

20

(
6 −2
−2 4

)(
8
1

)
(
C
D

)
=

1

20

(
46
−12

)
=

1

10

(
23
−6

)
We conclude that the best fit line is b = 23

10 −
6
10 t.

(c) The error vector (height of data points minus height of the best fit line) is

b− Pb = b−Ax̂ =


3
2
2
1

− 1

10


29
23
17
11

 =
1

10


1
−3
3
−1

 .

(d) Picture:



Problem 5. Find the best fit parabola C + tD + Et2 = b for the data points(
t
b

)
=

(
−1
3

)
,

(
0
0

)
,

(
1
0

)
,

(
2
1

)
,

using the following steps:

(a) Write down the matrix equation Ax = b that would be true if all four points were
on the same parabola C + tD + t2E = b. This equation has no solution.

(b) Now write down the normal equation ATAx̂ = ATb and solve it to find the least
squares approximation x̂ = (C,D,E).

(c) Compute the error vector e = b−Ax̂.
(d) Finally, draw the four data points along with their best fit parabola. Label the vertical

errors with the entries of the error vector e.

(a) Here is the unsolvable equation Ax = b:
C − 1D + 1E = 3
C + 0D + 0E = 0
C + 1D + 1E = 0
C + 2D + 4E = 1

 ⇔


1 −1 1
1 0 0
1 1 1
1 2 4


C
D
E

 =


3
0
0
1



(b) The (solvable) normal equation is ATAx̂ = ATb:

 1 1 1 1
−1 0 1 2
1 0 1 4




1 −1 1
1 0 0
1 1 1
1 2 4


C
D
E

 =

 1 1 1 1
−1 0 1 2
1 0 1 4




3
0
0
1


4 2 6

2 6 8
6 8 18

C
D
E

 =

 4
−1
7


C
D
E

 =

4 2 6
2 6 8
6 8 18

−1 4
−1
7

 =

3/10
−8/5

1

 .

(I used a computer in the final step.) We conclude that the best fit parabola is b = 3
10−

8
5 t+t2.

(c) The error vector (height of data points minus height of the best fit parabola) is

b− Pb = b−Ax̂ =


3
0
0
1

− 1

10


29
3
−3
11

 =
1

10


1
−3
3
−1

 .

(d) Picture:




