Problem 1. We say that P is a projection matrix if $P^{T}=P$ and $P^{2}=P$.
(a) If P is a projection, show that $I-P$ is also a projection.
(b) Show that the projections P and $I-P$ satisfy $P(I-P)=0$.
(c) Let A be any matrix of shape $m \times n$ so that $A^{T} A$ is square of shape $n \times n$. Assuming that the inverse $\left(A^{T} A\right)^{-1}$ exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection matrix.
[We saw in class that this matrix projects onto the column space of A.]
(d) In the special case that A is a square and invertible, show that $P=A\left(A^{T} A\right)^{-1} A^{T}=I$. What does this mean?
(a) Let P be a projection matrix, so that $P^{T}=P$ and $P^{2}=P$ and define $Q:=I-P$. Then Q is also a projection matrix because

$$
Q^{T}=(I-P)^{T}=I^{T}-P^{T}=I-P=Q
$$

and

$$
Q^{2}=(I-P)^{2}=I I-I P-P I+P^{2}=I-P-P+P=I-P=Q
$$

(b) Continuing from (a), we have $P Q=P(I-P)=P I-P^{2}=P-P=0$. (This notation represents the matrix of zeroes. I can't think of a better notation for it. Maybe O ?)
(c) Let A be any matrix such that $\left(A^{T} A\right)^{-1}$ exists, and define $P=A\left(A^{T} A\right)^{-1} A^{T}$. Then

$$
\begin{aligned}
P^{2} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]\left[A\left(A^{T} A\right)^{-1} A^{T}\right] \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1}\left(A^{T} A\right)\left(A^{T} A\right)^{-1} A^{T} \\
& =A I\left(A^{T} A\right)^{-1} A^{T} \\
& =A\left(A^{T} A\right)^{-1} A^{T}=P
\end{aligned}
$$

and

$$
\begin{aligned}
P^{T} & =\left[A\left(A^{T} A\right)^{-1} A^{T}\right]^{T} \\
& =\left(A^{T}\right)^{T}\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T} \\
& =A\left[\left(A^{T} A\right)^{-1}\right]^{T} A^{T} \\
& =A\left[\left(A^{T} A\right)^{T}\right]^{-1} A^{T} \\
& =A\left[A^{T}\left(A^{T}\right)^{T}\right]^{-1} A^{T} \\
& =A\left[A^{T} A\right]^{-1} A^{T}=P .
\end{aligned}
$$

Hence P is a projection matrix. In fact, one can show that every projection matrix has this form. (But we won't.)
(d) Continuing from (c), suppose that A is square and A^{-1} exists. Then

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=A A^{-1}\left(A^{T}\right)^{-1} A^{T}=I I=I
$$

Explanation: The matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ projects onto the column space of A. If A is square and invertible then its column space is everything. We observe that
project onto everything $=$ do nothing.

Problem 2. Consider the plane $x+2 y+2 z=0$ with normal vector $\mathbf{a}=(1,2,2)$.
(a) Use the formula from 1 (c) to find the 3×3 matrix P that projects onto the line $t \mathbf{t}$. [Hint: Just let $A=\mathbf{a}$.]
(b) Use the matrix P to project the vector $\mathbf{b}=(1,-1,1)$ onto the line.
(c) Find two vectors in the plane $x+2 y+2 z=0$ and then use the formula from 1(c) to find the 3×3 matrix Q that projects onto the plane. [Hint: Let A be the 3×2 matrix whose columns are the two vectors that you found.]
(d) Use the matrix Q to project the vector $\mathbf{b}=(1,-1,1)$ onto the plane.
(e) Finally, check that $P+Q=I$. Does this surprise you?
(a) If $A=\mathbf{a}$ is a $n \times 1$ matrix then the column space is just the line $t \mathbf{a}$, and the matrix product $\mathbf{a}^{T} \mathbf{a}=\mathbf{a} \bullet \mathbf{a}=\|\mathbf{a}\|^{2}$ is just a number. The matrix that projects onto the line $t \mathbf{a}$ is

$$
P=\mathbf{a}\left(\mathbf{a}^{T} \mathbf{a}\right)^{-1} \mathbf{a}=\mathbf{a}\left(\|\mathbf{a}\|^{2}\right)^{-1} \mathbf{a}=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a a}^{T}
$$

In the case of $\mathbf{a}=(1,2,2)$ we obtain

$$
P=\frac{1}{9}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 2
\end{array}\right)=\frac{1}{9}\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right) .
$$

(b) Then we project the vector $\mathbf{b}=(1,-1,1)$ onto the line as follows:

$$
P \mathbf{b}=\frac{1}{9}\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\frac{1}{9}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) .
$$

(c) Now consider the plane $\mathbf{a}^{T} \mathbf{x}=x+2 y+2 z=0$, which is perpendicular to the line $t \mathbf{a}$ and let Q be the matrix that projects onto the plane. We know that $Q=B\left(B^{T} B\right)^{-1} B^{T}$, where $B=\left(\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right)$ is any 3×2 matrix whose columns \mathbf{u} and \mathbf{v} span the plane. Let's pick $\mathbf{u}=(-2,1,0)$ and $\mathbf{v}=(-2,0,1) \mathbf{J}^{1}$ Then we have

$$
B^{T} B=\left(\begin{array}{lll}
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)
$$

and henc $\mathbb{2}^{2}$

$$
\left(B^{T} B\right)^{-1}=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)^{-1}=\frac{1}{9}\left(\begin{array}{cc}
5 & -4 \\
-4 & 5
\end{array}\right) .
$$

Finally, we compute

$$
Q=B\left(B^{T} B\right)^{-1} B^{T}=\left(\begin{array}{cc}
-2 & -2 \\
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{9}\left(\begin{array}{cc}
5 & -4 \\
-4 & 5
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)=\frac{1}{9}\left(\begin{array}{ccc}
8 & -2 & -2 \\
-2 & 5 & -4 \\
-2 & -4 & 5
\end{array}\right) .
$$

(d) We project the vector $\mathbf{b}=(1,-1,1)$ onto the plane as follows:

$$
Q \mathbf{b}=\frac{1}{9}\left(\begin{array}{ccc}
8 & -2 & -2 \\
-2 & 5 & -4 \\
-2 & -4 & 5
\end{array}\right)\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\frac{1}{9}\left(\begin{array}{c}
8 \\
-11 \\
7
\end{array}\right) .
$$

[^0](e) We observe that $P \mathbf{b}+Q \mathbf{b}=\mathbf{b}$. Indeed, the same identity would hold for any vector \mathbf{b} since the four points $\mathbf{b}, P \mathbf{b}, Q \mathbf{b}, \mathbf{0}$ lie at the vertices of a rectangle. It follows that $P+Q$ is the identity matrix. Remark: We could have used this as a shortcut to compute Q. See the next problem.

Problem 3. Shortcut. Let $\mathbf{a}=(1,2,-1,1)$ and consider the following hyperplane in \mathbb{R}^{4} :

$$
\mathbf{a}^{T} \mathbf{x}=1 x_{1}+2 x_{2}-1 x_{3}+1 x_{4}=0
$$

(a) Use $1(\mathrm{c})$ to compute the matrix P that projects onto the line $t \mathbf{a}$.
(b) We could also use $1(\mathrm{c})$ to compute the matrix Q that projects onto the hyperplane, but this would take too long. Instead, use the shortcut formula $Q=I-P$.
(c) Project the point $(1,2,3,4)$ onto the hyperplane.
(a) The matrix that projects onto the line is

$$
P=\frac{1}{\|\mathbf{a}\|^{2}} \mathbf{a}^{T}=\frac{1}{7}\left(\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & -1 & 1
\end{array}\right)=\frac{1}{7}\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
2 & 4 & -2 & 2 \\
-1 & -2 & 1 & -1 \\
1 & 2 & -1 & 1
\end{array}\right)
$$

(b) The matrix that projects onto the hyperplane is

$$
Q=I-P=\frac{1}{7}\left(\begin{array}{cccc}
7 & 0 & 0 & 0 \\
0 & 7 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right)-\frac{1}{7}\left(\begin{array}{cccc}
1 & 2 & -1 & 1 \\
2 & 4 & -2 & 2 \\
-1 & -2 & 1 & -1 \\
1 & 2 & -1 & 1
\end{array}\right)=\frac{1}{7}\left(\begin{array}{cccc}
6 & -2 & 1 & -1 \\
-2 & 3 & 2 & -2 \\
1 & 2 & 6 & 1 \\
-1 & -2 & 1 & 6
\end{array}\right)
$$

(c) We project the point $\mathbf{b}=(1,2,3,4)$ onto the hyperplane as follows:

$$
Q \mathbf{b}=\frac{1}{7}\left(\begin{array}{cccc}
6 & -2 & 1 & -1 \\
-2 & 3 & 2 & -2 \\
1 & 2 & 6 & 1 \\
-1 & -2 & 1 & 6
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)=\frac{1}{7}\left(\begin{array}{c}
1 \\
2 \\
27 \\
22
\end{array}\right)
$$

Problem 4. Find the best fit line $C+t D=b$ for the data points

$$
\binom{t}{b}=\binom{-1}{3},\binom{0}{2},\binom{1}{2},\binom{2}{1}
$$

using the following steps:
(a) Write down the matrix equation $A \mathbf{x}=\mathbf{b}$ that would be true if all four points were on the same line $C+t D=b$. This equation has no solution.
(b) Now write down the normal equation $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ and solve it to find the least squares approximation $\hat{\mathbf{x}}=(C, D)$.
(c) Compute the error vector $\mathbf{e}=\mathbf{b}-A \hat{\mathbf{x}}$.
(d) Finally, draw the four data points along with their best fit line. Label the vertical errors with the entries of the error vector \mathbf{e}.
(a) Here is the unsolvable equation $A \mathbf{x}=\mathbf{b}$:

$$
\left\{\begin{array}{l}
C-1 D=3 \\
C+0 D=2 \\
C+1 D=2 \\
C+2 D=1
\end{array}\right\} \Leftrightarrow\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D}=\left(\begin{array}{l}
3 \\
2 \\
2 \\
1
\end{array}\right)
$$

(b) The (solvable) normal equation is $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$:

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)\binom{C}{D} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
3 \\
2 \\
2 \\
1
\end{array}\right) \\
\left(\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right)\binom{C}{D} & =\binom{8}{1} \\
\binom{C}{D} & =\frac{1}{20}\left(\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right)\binom{8}{1} \\
\binom{C}{D} & =\frac{1}{20}\binom{46}{-12}=\frac{1}{10}\binom{23}{-6}
\end{aligned}
$$

We conclude that the best fit line is $b=\frac{23}{10}-\frac{6}{10} t$.
(c) The error vector (height of data points minus height of the best fit line) is

$$
\mathbf{b}-P \mathbf{b}=\mathbf{b}-A \hat{\mathbf{x}}=\left(\begin{array}{l}
3 \\
2 \\
2 \\
1
\end{array}\right)-\frac{1}{10}\left(\begin{array}{l}
29 \\
23 \\
17 \\
11
\end{array}\right)=\frac{1}{10}\left(\begin{array}{c}
1 \\
-3 \\
3 \\
-1
\end{array}\right) .
$$

(d) Picture:

Problem 5. Find the best fit parabola $C+t D+E t^{2}=b$ for the data points

$$
\binom{t}{b}=\binom{-1}{3},\binom{0}{0},\binom{1}{0},\binom{2}{1},
$$

using the following steps:
(a) Write down the matrix equation $A \mathbf{x}=\mathbf{b}$ that would be true if all four points were on the same parabola $C+t D+t^{2} E=b$. This equation has no solution.
(b) Now write down the normal equation $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ and solve it to find the least squares approximation $\hat{\mathbf{x}}=(C, D, E)$.
(c) Compute the error vector $\mathbf{e}=\mathbf{b}-A \hat{\mathbf{x}}$.
(d) Finally, draw the four data points along with their best fit parabola. Label the vertical errors with the entries of the error vector \mathbf{e}.
(a) Here is the unsolvable equation $A \mathbf{x}=\mathbf{b}$:

$$
\left\{\begin{array}{l}
C-1 D+1 E=3 \\
C+0 D+0 E=0 \\
C+1 D+1 E=0 \\
C+2 D+4 E=1
\end{array}\right\} \Leftrightarrow\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0 \\
1
\end{array}\right)
$$

(b) The (solvable) normal equation is $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$:

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2 \\
1 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
3 \\
0 \\
0 \\
1
\end{array}\right) \\
\left(\begin{array}{ccc}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right)\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right) & =\left(\begin{array}{c}
4 \\
-1 \\
7
\end{array}\right) \\
\left(\begin{array}{l}
C \\
D \\
E
\end{array}\right) & =\left(\begin{array}{ccc}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right)^{-1}\left(\begin{array}{c}
4 \\
-1 \\
7
\end{array}\right)=\left(\begin{array}{c}
3 / 10 \\
-8 / 5 \\
1
\end{array}\right) .
\end{aligned}
$$

(I used a computer in the final step.) We conclude that the best fit parabola is $b=\frac{3}{10}-\frac{8}{5} t+t^{2}$.
(c) The error vector (height of data points minus height of the best fit parabola) is

$$
\mathbf{b}-P \mathbf{b}=\mathbf{b}-A \hat{\mathbf{x}}=\left(\begin{array}{l}
3 \\
0 \\
0 \\
1
\end{array}\right)-\frac{1}{10}\left(\begin{array}{c}
29 \\
3 \\
-3 \\
11
\end{array}\right)=\frac{1}{10}\left(\begin{array}{c}
1 \\
-3 \\
3 \\
-1
\end{array}\right) .
$$

(d) Picture:

[^0]: ${ }^{1}$ These are the vectors you get by letting $y=s$ and $z=t$ be parameters.
 ${ }^{2}$ Use Gaussian elimination if you need to.

