Problem 1. We say that P is a projection matrix if $P^{T}=P$ and $P^{2}=P$.
(a) If P is a projection, show that $I-P$ is also a projection.
(b) Show that the projections P and $I-P$ satisfy $P(I-P)=0$.
(c) Let A be any matrix of shape $m \times n$ so that $A^{T} A$ is square of shape $n \times n$. Assuming that the inverse $\left(A^{T} A\right)^{-1}$ exists, show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection matrix. [We saw in class that this matrix projects onto the column space of A.]
(d) In the special case that A is a square and invertible, show that $P=A\left(A^{T} A\right)^{-1} A^{T}=I$. What does this mean?

Problem 2. Consider the plane $x+2 y+2 z=0$ with normal vector $\mathbf{a}=(1,2,2)$.
(a) Use the formula from 1 (c) to find the 3×3 matrix P that projects onto the line $t \mathbf{a}$. [Hint: Just let $A=\mathbf{a}$.]
(b) Use the matrix P to project the vector $\mathbf{b}=(1,-1,1)$ onto the line.
(c) Find two vectors in the plane $x+2 y+2 z=0$ and then use the formula from 1 (c) to find the 3×3 matrix Q that projects onto the plane. [Hint: Let A be the 3×2 matrix whose columns are the two vectors that you found.]
(d) Use the matrix Q to project the vector $\mathbf{b}=(1,-1,1)$ onto the plane.
(e) Finally, check that $P+Q=I$. Does this surprise you?

Problem 3. Shortcut. Let $\mathbf{a}=(1,2,-1,1)$ and consider the following hyperplane in \mathbb{R}^{4} :

$$
\mathbf{a}^{T} \mathbf{x}=1 x_{1}+2 x_{2}-1 x_{3}+1 x_{4}=0
$$

(a) Use $1(\mathrm{c})$ to compute the matrix P that projects onto the line $t \mathbf{a}$.
(b) We could also use $1(\mathrm{c})$ to compute the matrix Q that projects onto the hyperplane, but this would take too long. Instead, use the shortcut formula $Q=I-P$.
(c) Project the point $(1,2,3,4)$ onto the hyperplane.

Problem 4. Find the best fit line $C+t D=b$ for the data points

$$
\binom{t}{b}=\binom{-1}{3},\binom{0}{2},\binom{1}{2},\binom{2}{1}
$$

using the following steps:
(a) Write down the matrix equation $A \mathbf{x}=\mathbf{b}$ that would be true if all four points were on the same line $C+t D=b$. This equation has no solution.
(b) Now write down the normal equation $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ and solve it to find the least squares approximation $\hat{\mathbf{x}}=(C, D)$.
(c) Compute the error vector $\mathbf{e}=\mathbf{b}-A \hat{\mathbf{x}}$.
(d) Finally, draw the four data points along with their best fit line. Label the vertical errors with the entries of the error vector \mathbf{e}.

Problem 5. Find the best fit parabola $C+t D+E t^{2}=b$ for the data points

$$
\binom{t}{b}=\binom{-1}{3},\binom{0}{0},\binom{1}{0},\binom{2}{1}
$$

using the following steps:
(a) Write down the matrix equation $A \mathbf{x}=\mathbf{b}$ that would be true if all four points were on the same parabola $C+t D+t^{2} E=b$. This equation has no solution.
(b) Now write down the normal equation $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ and solve it to find the least squares approximation $\hat{\mathbf{x}}=(C, D, E)$.
(c) Compute the error vector $\mathbf{e}=\mathbf{b}-A \hat{\mathbf{x}}$.
(d) Finally, draw the four data points along with their best fit parabola. Label the vertical errors with the entries of the error vector \mathbf{e}.

