Problem 1. Consider the following three matrices:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array}\right), \quad C=\binom{2}{1}
$$

Compute the following matrix products or explain why they do not exist:

$$
A B, \quad B A, \quad A B C, \quad C A B, \quad C^{T} A B .
$$

Answer: The matrix $C A B$ does not exist. The others are given by

$$
A B=\left(\begin{array}{cc}
2 & 0 \\
4 & -1
\end{array}\right), \quad B A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & -1 & -2
\end{array}\right), \quad A B C=\binom{4}{7}, \quad C^{T} A B=\left(\begin{array}{ll}
8 & -1
\end{array}\right) .
$$

Problem 2.

(a) Let A be an $m \times n$ matrix and let $\mathbf{e}_{j} \in \mathbb{R}^{n}$ be the standard basis vector with 1 in the j th position and 0 in every other position. Explain why

$$
A \mathbf{e}_{j}=(j \text { th column of } A) .
$$

(b) Use part (a) to find the 2×2 matrix R that rotates every vector in \mathbb{R}^{2} counterclockwise by 45°. [Hint: What does R do the basis vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$?]
(c) Use part (b) to rotate the vector $(1,3)$ counterclockwise by 45°.
(a) We can take it as a definition that (j th column of $A B)=A(j$ th column of $B)$. In the special case that $B=I$ is the identity matrix we get

$$
(j \text { th column of } \mathrm{A})=(j \text { th column of } \mathrm{AI})=A(j \text { th column of } \mathrm{I})=A \mathbf{e}_{j} .
$$

Or we can use the definition that

$$
A \mathbf{x}=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\sum_{j=1}^{n} x_{j}(j \text { th column of } \mathrm{A})
$$

Since \mathbf{e}_{j} has coordinates $e_{j j}=1$ and $e_{j i}=0$ if $i \neq j$ then we obtain

$$
A \mathbf{e}_{j}=\sum_{i=1}^{n} e_{j i}(j \text { th column of } A)=1(j \text { th column of } A)+0(\text { all the other columns }) .
$$

(b) The following picture shows that $R(1,0)=(1 / \sqrt{2}, 1 / \sqrt{2})$ and $R(0,1)=(-1 / \sqrt{2}, 1 / \sqrt{2})$:

It follows from part (a) that

$$
R=\left(R\binom{1}{0} \quad R\binom{0}{1}\right)=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) .
$$

(c) Then it follows from part (b) that

$$
R\binom{1}{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{1}{3}=\frac{1}{\sqrt{2}}\binom{-2}{4}
$$

Try doing that without linear algebra.
Problem 3. In general, I claim that the following 2×2 matrix rotates every vector counterclockwise by angle θ :

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(a) Find the matrices $R_{0^{\circ}}, R_{30^{\circ}}, R_{60^{\circ}}$ and $R_{90^{\circ}}$.
(b) Compute the matrix product $R_{30^{\circ}} \cdot R_{60^{\circ}}$.
(c) Give a geometric reason to explain why $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$ for all angles α and β.
(d) Use the result of part (c) to prove the trigonometric angle sum identities:

$$
\left\{\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta
\end{aligned}\right.
$$

(a) Answer:

$$
R_{0^{\circ}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad R_{30^{\circ}}=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right), \quad R_{60^{\circ}}=\frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right), \quad R_{90^{\circ}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

(b) Rotating by 60° and then by 30° is the same as rotating by 90° :

$$
R_{30^{\circ}} \cdot R_{60^{\circ}}=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & -\sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=R_{90^{\circ}} .
$$

(c) More generally, rotating by β and then by α (or the other way around) is the same as rotating by $\alpha+\beta$:

$$
R_{\alpha} R_{\beta}=R_{\beta} R_{\alpha}=R_{\alpha+\beta}
$$

There is not much more to say about this.
(d) It follows from (c) that for any real numbers α and β we have

$$
\begin{aligned}
R_{\alpha+\beta} & =R_{\alpha} R_{\beta} \\
\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \\
\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) & =\left(\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\cos \alpha \sin \beta+\sin \alpha \cos \beta & \cos \alpha \cos \beta-\sin \alpha \sin \beta
\end{array}\right)
\end{aligned}
$$

Comparing entries gives the angle sum identities. [Remark: These identities should never be memorized because they follow immediately from (c). Better to memorize the entries of the rotation matrix R_{θ}.]

Problem 4. Let A be a matrix of shape 2×3 and assume for contradiction that there exists an inverse matrix B of shape 3×2 such that

$$
A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Explain why the linear system $A \mathbf{x}=\mathbf{0}$ has at least one nonzero solution $\mathbf{x} \neq \mathbf{0}$. [Hint: Consider the RREF.]
(b) It follows from (a) that $(B A) \mathbf{x}=B(A \mathbf{x})=B \mathbf{0}=\mathbf{0}$ for some nonzero vector $\mathbf{x} \neq \mathbf{0}$. Explain why this is a contradiction.
[Remark: The same argument shows that any invertible matrix must be square.]
(a) Geometrically, the system $A \mathbf{x}=\mathbf{0}$ represents the intersection of two planes through the origin in \mathbb{R}^{3}. These planes must intersect in a line or a full plane, hence there must exist a nonzero solution (in fact, infinitely many). Alternatively, the RREF of the system $A \mathbf{x}=\mathbf{0}$ must have a non-pivot column because there can only be one pivot per row. Hence the system has infinitely many solutions. [The same argument works for any matrix with more columns than rows.]
(b) Now we know that $A \mathbf{0}=\mathbf{0}$ and $A \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \neq \mathbf{0}$. Since the function A sends the two different points \mathbf{x} and $\mathbf{0}$ to the same point $\mathbf{0}$ we know that it cannot be inverted ${ }^{1}$ To see this directly, assume for contradiction that there exists some matrix with $B A=I$. Then we must have

$$
\mathbf{x}=I \mathbf{x}=(B A) \mathbf{x}=B(A \mathbf{x})=B \mathbf{0}=\mathbf{0},
$$

which contradicts the fact that $\mathbf{x} \neq \mathbf{0}$. [The same argument shows every invertible matrix must be square.]

[^0]Problem 5. Let A be some matrix and suppose that we have

$$
A \mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad A \mathbf{b}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad A \mathbf{b}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

for some vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. Now let $B=\left(\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right)$ be the matrix with columns $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. Compute the matrix product $A B$.

Recall that $(j$ th column of $A B)=A(j$ th column of $B)=A \mathbf{b}_{j}$. It follows that

$$
A B=\left(\begin{array}{lll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & A \mathbf{b}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I .
$$

In other words, $B=A^{-1}$.
Problem 6. Not every square matrix is invertible. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & c
\end{array}\right) \quad \text { for some constant } c .
$$

(a) If $c=0$, find some specific nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=\mathbf{0}$. In this case it follows as in Problem 4 that A is not invertible.
(b) If $c \neq 0$ then the matrix A is invertible. Compute the RREF of the augmented matrix $(A \mid I)$ to find the inverse. [Remark: This method works because of Problem 5. You are solving three linear systems simultaneously to find the column vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ of the inverse matrix.]
(a) For any real number t we observe that

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
t
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

By choosing any $t \neq 0$ we conclude that the matrix on the left is not invertible. [Recall: If a matrix sends any nonzero vector to zero then it is not invertible.]
(b) On the other hand, if $c \neq 0$ then we can compute the inverse:

$$
\begin{aligned}
\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & c & 0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & c & -1 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & c & 0 & -1 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 / c & 1 / c
\end{array}\right)
\end{aligned}
$$

It follows that

$$
A^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & c
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 / c & 1 / c
\end{array}\right)=B .
$$

You should verify this by computing the products $A B$ and $B A$.

[^0]: ${ }^{1}$ Technically speaking: We say that a function $f: S \rightarrow T$ is invertible if (1) it is injective, meaning that $f(x)=f(y)$ implies $x=y$ and (2) it is surjective, meaning that for every $t \in T$ there exists some $s \in S$ such that $f(s)=t$. We have just shown that the matrix function A is not injective, hence it cannot be invertible.

