Problem 1. Consider the following three matrices:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array}\right), \quad C=\binom{2}{1} .
$$

Compute the following matrix products or explain why they do not exist:

$$
A B, \quad B A, \quad A B C, \quad C A B, \quad C^{T} A B
$$

Problem 2.

(a) Let A be an $m \times n$ matrix and let $\mathbf{e}_{j} \in \mathbb{R}^{m}$ be the standard basis vector with 1 in the j th position and 0 in every other position. Explain why

$$
A \mathbf{e}_{j}=(j \text { th column of } A) .
$$

(b) Use part (a) to find the 2×2 matrix R that rotates every vector in \mathbb{R}^{2} counterclockwise by 45°. [Hint: What does R do the basis vectors $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$?]
(c) Use part (b) to rotate the vector $(1,3)$ counterclockwise by 45°.

Problem 3. In general, I claim that the following 2×2 matrix rotates every vector counterclockwise by angle θ :

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(a) Find the matrices $R_{0^{\circ}}, R_{30^{\circ}}, R_{60^{\circ}}$ and $R_{90^{\circ}}$.
(b) Compute the matrix product $R_{30^{\circ}} \cdot R_{60^{\circ}}$.
(c) Give a geometric reason to explain why $R_{\alpha} R_{\beta}=R_{\alpha+\beta}$ for all angles α and β.
(d) Use the result of part (c) to prove the trigonometric angle sum identities:

$$
\left\{\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\cos \alpha \sin \beta+\sin \alpha \cos \beta
\end{aligned}\right.
$$

Problem 4. Let A be a matrix of shape 2×3 and assume for contradiction that there exists an inverse matrix B of shape 3×2 such that

$$
A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Explain why the linear system $A \mathbf{x}=\mathbf{0}$ has at least one nonzero solution $\mathbf{x} \neq \mathbf{0}$. [Hint: Consider the RREF.]
(b) It follows from (a) that $(B A) \mathbf{x}=B(A \mathbf{x})=B \mathbf{0}=\mathbf{0}$ for some nonzero vector $\mathbf{x} \neq \mathbf{0}$. Explain why this is a contradiction.
[Remark: The same argument shows that any invertible matrix must be square.]
Problem 5. Let A be some matrix and suppose that we have

$$
A \mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad A \mathbf{b}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad A \mathbf{b}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

for some vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. Now let $B=\left(\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right)$ be the matrix with columns $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. Compute the matrix product $A B$.

Problem 6. Not every square matrix is invertible. Consider the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & c
\end{array}\right) \quad \text { for some constant } c
$$

(a) If $c=0$, find some specific nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=\mathbf{0}$. In this case it follows as in Problem 4 that A is not invertible.
(b) If $c \neq 0$ then the matrix A is invertible. Compute the RREF of the augmented matrix $(A \mid I)$ to find the inverse. [Remark: This method works because of Problem 5. You are solving three linear systems simultaneously to find the column vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ of the inverse matrix.]

