Problem 1. Consider the following three matrices:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Compute the following matrix products or explain why they do not exist:

 $AB, BA, ABC, CAB, C^TAB.$

Problem 2.

(a) Let A be an $m \times n$ matrix and let $\mathbf{e}_j \in \mathbb{R}^m$ be the standard basis vector with 1 in the *j*th position and 0 in every other position. Explain why

$$A\mathbf{e}_{i} = (j \text{th column of } A).$$

- (b) Use part (a) to find the 2×2 matrix R that rotates every vector in \mathbb{R}^2 counterclockwise by 45°. [Hint: What does R do the basis vectors $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$?]
- (c) Use part (b) to rotate the vector (1,3) counterclockwise by 45° .

Problem 3. In general, I claim that the following 2×2 matrix rotates every vector counterclockwise by angle θ :

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- (a) Find the matrices $R_{0^{\circ}}$, $R_{30^{\circ}}$, $R_{60^{\circ}}$ and $R_{90^{\circ}}$.
- (b) Compute the matrix product $R_{30^{\circ}} \cdot R_{60^{\circ}}$.
- (c) Give a geometric reason to explain why $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$ for all angles α and β .
- (d) Use the result of part (c) to prove the trigonometric angle sum identities:

$$\begin{cases} \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta. \end{cases}$$

Problem 4. Let A be a matrix of shape 2×3 and assume for contradiction that there exists an inverse matrix B of shape 3×2 such that

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- (a) Explain why the linear system $A\mathbf{x} = \mathbf{0}$ has at least one nonzero solution $\mathbf{x} \neq \mathbf{0}$. [Hint: Consider the RREF.]
- (b) It follows from (a) that $(BA)\mathbf{x} = B(A\mathbf{x}) = B\mathbf{0} = \mathbf{0}$ for some nonzero vector $\mathbf{x} \neq \mathbf{0}$. Explain why this is a contradiction.

[Remark: The same argument shows that any invertible matrix must be square.]

Problem 5. Let A be some matrix and suppose that we have

$$A\mathbf{b}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \qquad A\mathbf{b}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \qquad A\mathbf{b}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix},$$

for some vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$. Now let $B = \begin{pmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{pmatrix}$ be the matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$. Compute the matrix product AB.

Problem 6. Not every square matrix is invertible. Consider the following matrix:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & c \end{pmatrix} \qquad \text{for some constant } c.$$

- (a) If c = 0, find some specific nonzero vector $\mathbf{x} \neq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{0}$. In this case it follows as in Problem 4 that A is **not invertible**.
- (b) If $c \neq 0$ then the matrix A is invertible. Compute the RREF of the augmented matrix (A|I) to find the inverse. [Remark: This method works because of Problem 5. You are solving three linear systems simultaneously to find the column vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ of the inverse matrix.]