Problem 1. In class I stated that a system of linear equations has either 0,1 , or ∞ many solutions. Let's examine this claim.
(a) Suppose that $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{x}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ are two solutions to the linear equation $a x+b y+c z=d$. Show that the midpoint $\left(\mathbf{x}_{0}+\mathbf{x}_{1}\right) / 2$ is also a solution.
(b) Continuing from (a), show that every point of the line $(1-t) \mathbf{x}_{0}+t \mathbf{x}_{1}$ is also a solution to the equation $a x+b y+c z=d$.
(c) Fill in the blank: If 25 hyperplanes in 12 -dimensional space meet at two points \mathbf{x}_{0} and \mathbf{x}_{1}, then they must also meet at \qquad .

Problem 2. Consider the following linear system:

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x+2 y+z=3 \\
x+3 y+2 z=5
\end{array}\right.
$$

(a) Compute the RREF of the system.
(b) Describe the row picture of the solution.
(c) Describe the column picture of the solution.

Problem 3. Now consider the modified system:

$$
\left\{\begin{array}{r}
x+y+z=2 \\
x+2 y+z=3 \\
2 x+3 y+2 z=c
\end{array}\right.
$$

where c is an arbitrary constant.
(a) Put the system in staircase form. You don't need to compute the RREF.
(b) Fill in the blanks: The first two planes meet in a line L. When $c=5$ we have ∞ many solutions because the third plane \qquad , but when $c=6$ we have 0 solutions because the third plane \qquad .
(c) Fill in the blank: It is impossible for the system to have exactly 1 solution because if we have one solution

$$
x_{1}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+y_{1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+z_{1}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
c
\end{array}\right)
$$

then we also have another solution \qquad . [Hint: Change x_{1} and z_{1} somehow. The value of c is irrelevant.]

Problem 4. Consider the following linear system:

$$
\left\{\begin{array}{rr}
0+x_{2}+0+x_{4}-x_{5}-4 x_{6}= & -1 \\
x_{1}+2 x_{2}-x_{3}+4 x_{4}-x_{5}-4 x_{6}= & 3 \\
x_{1}+2 x_{2}-x_{3}+4 x_{4}+0-x_{6}= & 5
\end{array}\right.
$$

(a) Compute the RREF of the system.
(b) Write down the full solution in parametric form.
(c) Describe the row picture of the solution.

