1. Define the standard basis vectors $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0)$ and $\mathbf{e}_{3}=(0,0,1)$.
(a) Draw the cube with the following 8 vertices:

$$
\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{3}, \mathbf{e}_{2}+\mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3} .
$$

(b) Draw the triangle in 3 D with corners at $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. Compute the side lengths and the angles of this triangle by using the dot product.
2. Let $\mathbf{u}=(1,2)$ and $\mathbf{v}=(3,1)$.
(a) Draw the points \mathbf{u} and \mathbf{v} together with the points

$$
\frac{1}{2} \mathbf{u}+\frac{1}{2} \mathbf{v}, \quad \frac{1}{4} \mathbf{u}+\frac{3}{4} \mathbf{v}, \quad \frac{1}{4} \mathbf{u}+\frac{1}{4} \mathbf{v}, \quad \mathbf{u}+\mathbf{v} .
$$

(b) Draw the infinite line $\{t \mathbf{v}+t \mathbf{u}\}$ where t is any real number. [Hint: It is enough to draw two points on this line and then use a ruler.]
(c) Draw the infinite line $\{t \mathbf{u}+(1-t) \mathbf{v}\}$ where t is any real number. [Hint: Same as (b).]
(d) Shade the finite region of the plane defined by $\{s \mathbf{u}+t \mathbf{v}: 0 \leq s \leq 1,0 \leq t \leq 1\}$.
(e) Shade the infinite region of the plane defined by $\{s \mathbf{u}+t \mathbf{v}: 0 \leq s, 0 \leq t\}$.
3. Let \mathbf{u} and \mathbf{v} be any two vectors satisfying

$$
\mathbf{u} \bullet \mathbf{u}=\mathbf{v} \bullet \mathbf{v}=1 \quad \text { and } \quad \mathbf{u} \bullet \mathbf{v}=0 .
$$

Compute the following dot products:
(a) $\mathbf{u} \bullet(-\mathbf{u})$
(b) $(\mathbf{u}+\mathbf{v}) \bullet(\mathbf{u}-\mathbf{v})$
(c) $(\mathbf{u}+2 \mathbf{v}) \cdot(\mathbf{u}-2 \mathbf{v})$

4. Lines and Planes

(a) The set of vectors $\mathbf{x}=(x, y)$ that are perpendicular to $\mathbf{v}=(2,1)$ form a line. Draw this line and find its equation.
(b) Draw the line that is parallel to the vector $\mathbf{v}=(2,1)$ and contains the point $(1,3)$. Find the equation of this line.
(c) Describe the set of vectors $\mathbf{x}=(x, y, z)$ that are perpendicular to the vector $(1,1,1)$. Try to draw a picture.
(d) Describe the set of vectors $\mathbf{x}=(x, y, z)$ that are simultaneously perpendicular to each of the vectors $(1,1,1)$ and $(1,2,3)$. Try to draw a picture.
5. Associativity of vector addition. Consider $\mathbf{u}=\left(u_{1}, u_{2}\right), \mathbf{v}=\left(v_{1}, v_{2}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$.
(a) Use algebra to prove that $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$. [Hint: You may assume that addition of numbers is associative.]
(b) Draw a picture to demonstrate that $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$.

