This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, both students will receive a score of zero. There are 6 problems and 7 pages. Each page is worth 6 points, for a total of 42 points.

Problem 1. Consider the points $\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ in the Cartesian plane.

(a) Draw the collection of points $s\vec{x} + t\vec{y}$ where $0 \le s \le 1$ and $0 \le t \le 1$.

(b) Draw the collection of points $t\vec{x} + t\vec{y}$ for all t.

(c) Draw the collection of points $t\vec{x} + (1-t)\vec{y}$ for all t.

Problem 2. Consider the same vectors $\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ from Problem 1.

(a) Compute the lengths of \vec{x} and \vec{y} .

$$\|\vec{x}\| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $\|\vec{y}\| = \sqrt{(-1)^2 + 3^2} = \sqrt{10}$

(b) Compute the cosine of the angle between \vec{x} and \vec{y} .

$$\cos 5\theta = \frac{\vec{\times} \cdot \vec{y}}{\|\vec{\times}\| \|\vec{y}\|} = \frac{2(-1) + 1(3)}{\sqrt{5}\sqrt{10}} = \frac{1}{\sqrt{50}}$$

(c) Compute the otrhogonal projection of the point \vec{x} onto the line $t\vec{y}$.

projection matrix
$$P = \frac{337}{373} = \frac{1}{10} \begin{pmatrix} 1 - 3 \\ -3 \end{pmatrix}$$

Projection of χ :

$$P = \frac{337}{373} = \frac{1}{10} \begin{pmatrix} 1 - 3 \\ 2 \end{pmatrix}$$

$$P_{x}^{2} = \frac{1}{10} \begin{pmatrix} 1 - 3 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \frac{1}{10} \begin{pmatrix} 2 - 3 \\ -6 + 9 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Problem 3. Consider the vectors
$$\vec{u} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ in \mathbb{R}^3 .

(a) Find a vector in \mathbb{R}^3 that is perpendicular to **both** of the vectors \vec{u} and \vec{v} .

$$\begin{cases} \vec{\chi} \circ \vec{u} = 0 \\ \vec{\chi} \circ \vec{v} = 0 \end{cases} \qquad \begin{cases} (132|0) \\ (-121|0) \\ (013/5|0) \\ (013/5|0) \end{cases} \qquad \begin{cases} (132|0) \\ (053|0) \\ (013/5|0) \\ (013/5|0) \end{cases} \qquad \begin{cases} (132|0) \\ (053|0) \\ (013/5|0) \\ (013/5|0) \end{cases} \qquad \begin{cases} (132|0) \\ (053|0) \\ (013/5|0) \\ (013/5|0) \end{cases} \qquad \begin{cases} (132|0) \\ (053|0) \\ (013/5|0) \\ (013/5|0) \\ (013/5|0) \end{cases}$$

(b) Use your answer from part (a) to find the equation of the plane $s\vec{u} + t\vec{v}$. $= -\frac{t}{5} \begin{pmatrix} 1\\3\\-5 \end{pmatrix}$ The plane \perp to (1,3,-5) is

$$1 \times +3 -5 = 0$$

(c) Compute the 3×3 matrix that projects orthogonally onto the plane from part (b).

$$P = \text{proj onto line } t\left(\frac{1}{3}\right) = \frac{1}{35} \left(\frac{1}{3}, \frac{3}{5} - \frac{5}{5}\right)$$

$$Q = projecto plane$$

$$= I - P$$

$$= \frac{1}{35} {35 \choose 35} - \frac{1}{35} {35 \choose -5-15} {35 \choose 25}$$

$$= \frac{1}{35} {35 \choose 35} - \frac{1}{35} {35 \choose -5-15} {25 \choose 25}$$

$$= \frac{1}{35} \begin{pmatrix} 34 - 3 & 5 \\ -3 & 26 & 15 \\ 5 & 15 & 10 \end{pmatrix}$$

Problem 4. Consider the following system of 3 linear equations in 4 unknowns:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 = 2 \\ 3x_1 + 3x_2 + 4x_3 + 5x_4 = 3 \end{cases}$$

(a) Put the system in Reduced Row Echelon Form (RREF).

(b) Tell me the pivot and non-pivot variables.

(c) Write down the complete solution of the system.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1-s+t \\ s \\ -2t \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

- **Problem 5.** Consider the matrix $T = \begin{pmatrix} 0.4 & 0.8 \\ 0.6 & 0.2 \end{pmatrix}$.
 - (a) Write down the characteristic equation of the matrix T. I'll just tell you that its two roots are 1 and -0.4 (you don't have to check this).

$$\det(T - \lambda I) = \det\begin{pmatrix} 0.4 - \lambda & 0.8 \\ 0.6 & 0.2 - \lambda \end{pmatrix} = 0$$

$$(0.4 - \lambda)(0.2 - \lambda) - (0.6)(0.8) = 0$$

(b) Find an eigenvector of T corresponding to eigenvalue $\lambda = 1$.

$$\begin{pmatrix} 0.4 - 1 & 0.8 & 0 \\ 0.6 & 0.2 - 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -0.6 & 0.8 \\ 0.6 & -0.8 & 0 \end{pmatrix}$$

$$3 - 4 \mid 0 \rangle \sim 3x - 4y = 0$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = t \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

(c) Find an eigenvector of T corresponding to eigenvalue $\lambda = -0.4$.

$$\begin{pmatrix} 0.4 + 0.4 & 0.8 & 0.8 & 0.8 & 0.8 & 0.6 & 0.$$

$$\begin{pmatrix} \times \\ y \end{pmatrix} = \pm \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

(d) Express $\binom{3}{4}$ as a linear combination of the eigenvectors from parts (b) and (c).

$$\binom{3}{4} = s \binom{4}{3} + t \binom{1}{-1} = \binom{4}{3} - 1 \binom{5}{4}$$

$$\binom{2}{5} = \binom{4}{3} - \binom{1}{1} - \binom{3}{4} = \frac{1}{7} \binom{-3}{7} \binom{3}{4}$$

$$=\frac{1}{7}\left(\begin{array}{c}-7\\7\end{array}\right)=\left(\begin{array}{c}1\\-1\end{array}\right)$$

(e) Finally, consider the linear recurrence relation $\vec{v}_n = T\vec{v}_{n-1}$ with initial condition $\vec{v}_0 = (3,4)$. Use all of your previous work to find a "closed form" solution for the n-th vector \vec{v}_n .

$$\vec{\nabla}_{n} = T^{n} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = T^{n} \begin{pmatrix} 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= T^{n} \begin{pmatrix} 4 \\ 3 \end{pmatrix} - T^{n} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$=1^{n} \left(\frac{4}{3}\right) - \left(-0.4\right)^{n} \left(\frac{1}{-1}\right)$$

Problem 6. Let A be a square matrix.

(a) If A is invertible, explain why $\lambda = 0$ cannot be an eigenvalue of A. [Hint: Suppose that we have $A\vec{x} = 0\vec{x} = \vec{0}$ for some vector $\vec{x} \neq \vec{0}$. Then ...]

Suppose A-1 exists. Then
$$A \overrightarrow{x} = \overrightarrow{0} \text{ implies that}$$

$$\overrightarrow{x} = \overrightarrow{1} \overrightarrow{x} = A^{-1} A \overrightarrow{x} = A^{-1} \overrightarrow{0} = \overrightarrow{0}.$$

(b) If A is invertible and λ is an eigenvalue of A, explain why λ^{-1} is an eigenvalue of the inverse matrix A^{-1} . [Hint: Suppose that we have $A\vec{x}=\lambda\vec{x}$ for some vector $\vec{x}\neq\vec{0}$. Then ...]

If
$$A \stackrel{?}{\times} = \lambda \stackrel{?}{\times}$$
 and $\stackrel{?}{\times} \neq 0$ then
$$A \stackrel{?}{\wedge} A \stackrel{?}{\times} = A^{-1}(\lambda \stackrel{?}{\times})$$

$$\stackrel{?}{\times} = \lambda (A^{-1} \stackrel{?}{\times})$$

$$\stackrel{?}{\times} = A^{-1} \stackrel{?}{\times} \implies \lambda^{-1} \text{ is e.value}$$
of A^{-1}

(c) Suppose that A is a 2×2 matrix with eigenvalues $\lambda = 3$ and $\lambda = 4$. In this case, tell me the eigenvalues of the matrix A^n .

$$A \neq 3 \neq 3$$
, $A \neq 4 \neq 3$
 $A^n \neq 3 \neq 4$, $A^n \neq 4 \neq 4 \neq 3$
 $\Rightarrow 3^n \neq 4^n$ are e. Values of A^n

This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, both students will receive a score of zero. There are 7 pages and 7 problems.

Problem 1. Consider the plane x + 2y - z = 0 in \mathbb{R}^3 .

(a) Tell me a normal vector to the plane.

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

(b) Tell me a normal vector of length 1,

$$\frac{1}{\|\vec{\lambda}\|} \vec{\lambda} = \frac{1}{\sqrt{6}} \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix}$$

(c) Compute the matrix Q that projects orthogonally onto the normal line.

$$Q = \vec{a} (\vec{a} \vec{a} \vec{a})^{-1} \vec{a}^{T} = \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} \left((12-1) \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} \right)^{-1} (12-1)$$

$$= \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} (6)^{-1} (12-1) = \frac{1}{6} \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} (12-1)$$

$$= \frac{1}{6} \begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ -1 & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your answer from part (c) to save time.]

$$P = I - Q$$

$$= \frac{1}{6} \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 6 \\ 0 & 0 & 6 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}$$

Problem 2. The following matrix rotates vectors in \mathbb{R}^2 counterclockwise by 53.13°:

$$R = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}.$$

(You can just believe this. You don't have to show it.)

(a) Rotate the column vector (1,1) counterclockwise by 53.13°.

$$R\binom{1}{1} = \frac{1}{5}\binom{3-4}{4}\binom{1}{1} = \frac{1}{5}\binom{-1}{7}$$

(b) Compute the matrix that rotates vectors clockwise by 53.13°.

$$det(R) = 9/25 + 16/25 = 25/25 = 1, 86$$

$$R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}$$

(c) Rotate the column vector (1,1) clockwise by 53.13°.

$$R^{-1}\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{5}\begin{pmatrix} 3&4\\-4&3 \end{pmatrix}\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{5}\begin{pmatrix} +\\-1 \end{pmatrix}$$

(d) Compute the matrix that rotates counterclockwise by $106.26^{\circ} (= 2 \times 53.13^{\circ})$.

$$R^{2} = \frac{1}{5} \begin{pmatrix} 3 - 4 \\ 4 & 3 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 3 - 4 \\ 4 & 3 \end{pmatrix}$$

$$= \frac{1}{25} \begin{pmatrix} 3 - 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 + 4 \\ 4 & 3 \end{pmatrix}$$

$$= \frac{1}{25} \begin{pmatrix} 9 - 16 & -12 - 12 \\ 12 + 12 & -16 + 9 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} -7 & -24 \\ 24 & -7 \end{pmatrix}$$

Problem 3. Consider the following three planes in \mathbb{R}^3 :

$$x + y + z = 0, (1)$$

$$x + 2y - z = 0, (2)$$

$$x + 0y + z = 1. (3)$$

(a) Compute the intersection of the first and second planes. [Hint: It's a line.]

$$\begin{pmatrix}
0 & 1 & 1 & | & 0 \\
1 & 2 & -1 & | & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & | & 0 \\
0 & 0 & -2 & | & 0
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 0 & 3 & | & 0 \\
0 & 1 & 2 & | & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
x \\
2 \\
1
\end{pmatrix} = \begin{pmatrix}
-3s \\
2s \\
5
\end{pmatrix} = s \begin{pmatrix}
-3 \\
2 \\
1
\end{pmatrix}$$
Let $z = s$

(b) Compute the intersection of second and third planes. [Hint: It's a line.]

$$\begin{pmatrix}
0 & 0 & 1 & | & 1 \\
1 & 2 & -1 & | & 0
\end{pmatrix}
\longrightarrow \begin{pmatrix}
1 & 0 & 1 & | & 1 \\
0 & 2 & -2 & | & -1
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 0 & 1 & | & 1 \\
0 & 1 & 1 & | & -1/2
\end{pmatrix}
\longrightarrow \begin{pmatrix}
x \\ 5 \\ \frac{1}{2}
\end{pmatrix} = \begin{pmatrix}
1 - t \\ -1/2 + t \\ t
\end{pmatrix} = \begin{pmatrix}
1 \\ -1/2 \\ 0
\end{pmatrix} + t\begin{pmatrix}
-1 \\ 1 \\ 1
\end{pmatrix}$$

(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It's a point.]

Multiple ways to do this. I'll intersect the line from (a) with the plane (3).

Problem 4. Consider the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

(a) Use the Gauss-Jordan method to compute the inverse of A.

$$(AII) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \stackrel{R_1}{R_2}$$

(b) Solve the system $A\vec{x} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. [Hint: Use your answer from (a) to save time.]

$$\overrightarrow{\chi} = A^{-1} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Problem 5. Consider the following system:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & b \\ 0 & 1 & 1 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}.$$

Tell me some values for b and c such that

(a) the system has a unique solution \vec{x} .

b=0 and c= anything.
Then the solution is
$$\frac{1}{x} = A^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 - 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{from problem 4}.$$

(b) the system has no solution \vec{x} .

$$b=1 \text{ and } c \neq 0. \text{ Then}$$

$$\begin{pmatrix} 111 & 1 & 1 & 1 \\ 011 & 0 & 0 & 0 & 0 \\ 011 & c & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{impossible}}$$

(c) the system has infinitely many solutions \vec{x} .

A has shape nxm

Problem 6. Consider the matrix $A = (\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_m)$, where \vec{a}_i is the *i*th column. Suppose that A has n rows, so the columns are vectors in \mathbb{R}^n .

(a) Let \vec{x} be a vector in \mathbb{R}^n . Write a single matrix equation to say that \vec{x} is perpendicular to all the columns of A.

(b) You can think of your matrix equation from part (a) as a system of how many linear equations, in how many unknowns?

(c) The solution to your equation in part (a) most likely has how many dimensions?

(d) Now let \vec{b} be any point in \mathbb{R}^n and let \vec{p} be the point in the column space of A that is **closest** to \vec{b} . Write a formula for \vec{p} in terms of A and \vec{b} .

Problem 7. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n with $\vec{u}^T \vec{v} \neq 0$, and consider the $n \times n$ matrix

$$A = \frac{\vec{u} \, \vec{v}^T}{\vec{u}^T \vec{v}}. = \left(\frac{1}{\vec{u}^T \vec{v}}\right) \vec{u} \vec{v}^T$$

$$1 \times 1 \qquad n \times n$$

(a) For all vectors \vec{x} , show that $A\vec{x}$ is on the line generated by \vec{u} .

$$A\vec{\chi} = \frac{1}{4\tau \vec{r}} (\vec{x} \vec{r}) \vec{\chi} = \left(\frac{1}{4\tau \vec{r}}\right) \vec{u} (\vec{r} \vec{r} \vec{\chi}) = \left(\frac{\vec{r} \vec{r}}{4\tau \vec{r}}\right) \vec{u}$$

Number

Number

(b) The line generated by \vec{u} is an eigenspace for A. What is the eigenvalue?

(c) Now let \vec{x} be any vector **perpendicular** to \vec{v} . Show that $A\vec{x} = \vec{0}$.

Suppose
$$\vec{\nabla} \vec{x} = 0$$
, Then from (a) we have
$$A\vec{x} = (\vec{x})\vec{x} = 0 \vec{x} = \vec{0}$$

(d) Is the matrix Λ invertible? If so, tell me its inverse.

NO, because there exists
$$\vec{x} \neq \vec{0}$$
 such that $A\vec{x} = \vec{0}$. [If A were invertible we would get $\vec{x} = A^{-1}\vec{0} = \vec{0}$, contradiction.]