Math 210 F Drew Armstrong
Final Exam A Wed, Apr 27, 2016

This is a closed book test. No electronic devices are allowed. If two students submit exams
in which any solution has been copied. both students will receive a score of zero.
There are 6 problems and 7 pages. Each page is worth 6 points. for a total of 42 points.

Problem 1. Consider the points ¥ = (?) and i = <_31> in the Cartesian plane.
(a) Draw the collection of points sZ + t§ where 0 <s <l and 0 <t < 1.
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(b) Draw the collection of points t& + ty for all .
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(¢) Draw the collection of points ¢ + (1 — ¢)i for all .
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Problem 2. Consider the same vectors & = <?) and § = <_31> from Problem 1.

(a) Compute the lengths of & and 7.

(b) Compute the cosine of the angle between Z and /.
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(c) Compute the otrhogonal projection of the point Z onto the line ¢g.
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Problem 3. Consider the vectors ¢ = (3) and 7 = ( 2 ) in R3.
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(a) Find a vector in R3 that is perpendicular to both of the vectors @ and v
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(b) Use your answer from part (a) to find the equation of the plane si -+ tv. - E 3
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(c) Compute the 3 x 3 matrix that projects orthogonally onto the plane from part (b)
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Problem 4. Consider the following system of 3 linear equations in 4 unknowns:

z; + x2 + z3 + x4 = 1
2¢1 4+ 2z9 4+ 3x3 + 4dzy = 2
3xy + 3z + 4dxz + Sxy = 3

(a) Put the system in Reduced Row Echelon Form (RREF).
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(b) Tell me the pivot and non-pivot variables.
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(c) Write down the complete solution of the system.
X\ 1-s ¥+t 1 ] 1

x 7 S
= S
b - — /2,']: T

~ +

—
-
=
\
N C

i

O
AN

O
@)
O



. . 04 0.8
Problem 5. Consider the matrix 7' = (0.6 0.2)

(a) Write down the characteristic equation of the matrix T. T'll just tell you that its
two roots are 1 and —0.4 (you don’t have to check this).
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(b) Find an eigenvector of T' corresponding to eigenvalue A = 1.
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(c) Find an eigenvector of T corresponding to eigenvalue A = —0.4.
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(d) Express ( 4> as a linear combination of the eigenvectors from parts (b) and (
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(e) Finally, consider the linear recurrence relation v, = Tv,_; with initial condition

Up = (3,4). Use all of your previous work to find a “closed form” solution for the
n-th vector v,.
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Problem 6. Let A be a square matrix.

(a) If A is invertible. explain why A = 0 cannot be an eigenvalue of A. [Hint: Suppose
that we have AZ = 0% = 0 for some vector & # 0. Then ... ]
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(b) If A is invertible and ) is an eigenvalue of A, explain why A~! is an eigenvalue of
the inverse matrix A~'. [Hint: Suppose that we have AZ = A% for some vector

£+#0. Then ... ]
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(¢) Suppose that A is a 2 x 2 matrix with eigenvalues A = 3 and A = 4. In this case.
tell me the eigenvalues of the matrix A™.
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Math 210 E Drew Armstrong
Final Exam Monday, May 6, 2013

This is a closed book test. No electronic devices are allowed. If two students submit exams
in which any solution has been copied, both students will receive a score of zero.
There are 7 pages and 7 problems.

Problem 1. Consider the plane z + 2y — z = 0 in R3,
(a) Tell me a normal vector to the plane.
D
a = Z’I .

(b) Tell me a normal vector of length 1.
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(c) Compute the matrix @ that projects orthogonally onto the normal line.
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(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your
answer from part (c) to save time.]



Problem 2. The following matrix rotates vectors in R? counterclockwise by 53.13°:

1/3 —4
r-1(3 3.
(You can just believe this. You don’t have to show it.)

(a) Rotate the column vector (1,1) counterclockwise by 53.13°.
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(b) Compute the matrix that rotates vectors clockwise by 53.13°.
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(c) Rotate the column vector (1,1) clockwise by 53.13°.
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(d) Compute the matrix that rotates counterclockwise by 106.26°(= 2 x 53.13°).
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Problem 3. Consider the following three planes in R3:

z+y+z=0, (1)
r+2y—2=0, , (2)
z+0y+z=1. (3)

(a) Compute the intersection of the first and second planes. [Hint: It’s a line.]
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(b) Compute the intersection of second and third planes. [Hint: It's a line.]
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(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It’s a point.]
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Problem 5. Consider the following system:
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011 c

Tell me some values for b and ¢ such that

(a) the system has a unique solution .
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(b) the system has no solution .
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Problem 6. Consider the matrix A = (d‘l dg - d'm), where d; is the 7th column.
Suppose that A has n rows, so the columns are vectors in R".

(a) Let Z be a vector in R”. Write a single matrix equation to say that Z is perpendic-
ular to all the columns of A.
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(b) You can think of your matrix equation from part (a) as a system of how many
linear equations, in how many unknowns?
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(c) The solution to your equation in part (a) most likely has how many dimensions?
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(d) Now let b be any point in R™ and let § be the point in the column space of A that
is closest to b. Write a formula for p'in terms of A and b.
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Problem 7. Let % and 7 be vectors in R” with @77 # 0, and consider the n X n matrix
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(a) For all vectors &, show that AZ is on the line generated by .
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(b) The line generated by @ is an eigenspace for A. What is the eigenvalue?
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(c) Now let Z be any vector perpendicular to ¢. Show that AZ = 0
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(d) Is the matrix A invertible? If so, tell me its inverse.
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