Math 210 F
Final Exam A

Drew Armstrong Wed, Apr 27, 2016

This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, both students will receive a score of zero. There are 6 problems and 7 pages. Each page is worth 6 points, for a total of 42 points.

Problem 1. Consider the points $\vec{x}=\binom{2}{1}$ and $\vec{y}=\binom{-1}{3}$ in the Cartesian plane.
(a) Draw the collection of points $s \vec{x}+t \vec{y}$ where $0 \leq s \leq 1$ and $0 \leq t \leq 1$.
(b) Draw the collection of points $t \vec{x}+t \vec{y}$ for all t.
(c) Draw the collection of points $t \vec{x}+(1-t) \vec{y}$ for all t.

Problem 2. Consider the same vectors $\vec{x}=\binom{2}{1}$ and $\vec{y}=\binom{-1}{3}$ from Problem 1.
(a) Compute the lengths of \vec{x} and \vec{y}.
(b) Compute the cosine of the angle between \vec{x} and \vec{y}.
(c) Compute the otrhogonal projection of the point \vec{x} onto the line $t \vec{y}$.

Problem 3. Consider the vectors $\vec{u}=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ and $\vec{v}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$ in \mathbb{R}^{3}.
(a) Find a vector in \mathbb{R}^{3} that is perpendicular to both of the vectors \vec{u} and \vec{v}.
(b) Use your answer from part (a) to find the equation of the plane $s \vec{u}+t \vec{v}$.
(c) Compute the 3×3 matrix that projects orthogonally onto the plane from part (b).

Problem 4. Consider the following system of 3 linear equations in 4 unknowns:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=1 \\
2 x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=2 \\
3 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=3
\end{array}\right.
$$

(a) Put the system in Reduced Row Echelon Form (RREF).
(b) Tell me the pivot and non-pivot variables.
(c) Write down the complete solution of the system.

Problem 5. Consider the matrix $T=\left(\begin{array}{cc}0.4 & 0.8 \\ 0.6 & 0.2\end{array}\right)$.
(a) Write down the characteristic equation of the matrix T. I'll just tell you that its two roots are 1 and -0.4 (you don't have to check this).
(b) Find an eigenvector of T corresponding to eigenvalue $\lambda=1$.
(c) Find an eigenvector of T corresponding to eigenvalue $\lambda=-0.4$.
(d) Express $\binom{3}{4}$ as a linear combination of the eigenvectors from parts (b) and (c).
(e) Finally, consider the linear recurrence relation $\vec{v}_{n}=T \vec{v}_{n-1}$ with initial condition $\vec{v}_{0}=(3,4)$. Use all of your previous work to find a "closed form" solution for the n-th vector \vec{v}_{n}.

Problem 6. Let A be a square matrix.
(a) If A is invertible, explain why $\lambda=0$ cannot be an eigenvalue of A. [Hint: Suppose that we have $A \vec{x}=0 \vec{x}=\overrightarrow{0}$ for some vector $\vec{x} \neq \overrightarrow{0}$. Then ...]
(b) If A is invertible and λ is an eigenvalue of A, explain why λ^{-1} is an eigenvalue of the inverse matrix A^{-1}. [Hint: Suppose that we have $A \vec{x}=\lambda \vec{x}$ for some vector $\vec{x} \neq \overrightarrow{0}$. Then ...]
(c) Suppose that A is a 2×2 matrix with eigenvalues $\lambda=3$ and $\lambda=4$. In this case, tell me the eigenvalues of the matrix A^{n}.

This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, both students will receive a score of zero. There are 7 pages and 7 problems.

Problem 1. Consider the plane $x+2 y-z=0$ in \mathbb{R}^{3}.
(a) Tell me a normal vector to the plane.
(b) Tell me a normal vector of length 1.
(c) Compute the matrix Q that projects orthogonally onto the normal line.
(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your answer from part (c) to save time.]

Problem 2. The following matrix rotates vectors in \mathbb{R}^{2} counterclockwise by 53.13° :

$$
R=\frac{1}{5}\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right)
$$

(You can just believe this. You don't have to show it.)
(a) Rotate the column vector $(1,1)$ counterclockwise by 53.13°.
(b) Compute the matrix that rotates vectors clockwise by 53.13°.
(c) Rotate the column vector $(1,1)$ clockwise by 53.13°.
(d) Compute the matrix that rotates counterclockwise by $106.26^{\circ}\left(=2 \times 53.13^{\circ}\right)$.

Problem 3. Consider the following three planes in \mathbb{R}^{3} :

$$
\begin{array}{r}
x+y+z=0, \\
x+2 y-z=0, \\
x+0 y+z=1 . \tag{3}
\end{array}
$$

(a) Compute the intersection of the first and second planes. [Hint: It's a line.]
(b) Compute the intersection of second and third planes. [Hint: It's a line.]
(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It's a point.]

Problem 4. Consider the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$.
(a) Use the Gauss-Jordan method to compute the inverse of A.
(b) Solve the system $A \vec{x}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$. [Hint: Use your answer from (a) to save time.]

Problem 5. Consider the following system:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & b \\
0 & 1 & 1
\end{array}\right) \vec{x}=\left(\begin{array}{l}
1 \\
0 \\
c
\end{array}\right) .
$$

Tell me some values for b and c such that
(a) the system has a unique solution \vec{x}.
(b) the system has no solution \vec{x}.
(c) the system has infinitely many solutions \vec{x}.

Problem 6. Consider the matrix $A=\left(\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{m}\end{array}\right)$, where \vec{a}_{i} is the i th column. Suppose that A has n rows, so the columns are vectors in \mathbb{R}^{n}.
(a) Let \vec{x} be a vector in \mathbb{R}^{n}. Write a single matrix equation to say that \vec{x} is perpendicular to all the columns of A.
(b) You can think of your matrix equation from part (a) as a system of how many linear equations, in how many unknowns?
(c) The solution to your equation in part (a) most likely has how many dimensions?
(d) Now let \vec{b} be any point in \mathbb{R}^{n} and let \vec{p} be the point in the column space of A that is closest to \vec{b}. Write a formula for \vec{p} in terms of A and \vec{b}.

Problem 7. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{n} with $\vec{u}^{T} \vec{v} \neq 0$, and consider the $n \times n$ matrix

$$
A=\frac{\vec{u} \vec{v}^{T}}{\vec{u}^{T} \vec{v}}
$$

(a) For all vectors \vec{x}, show that $A \vec{x}$ is on the line generated by \vec{u}.
(b) The line generated by \vec{u} is an eigenspace for A. What is the eigenvalue?
(c) Now let \vec{x} be any vector perpendicular to \vec{v}. Show that $A \vec{x}=\overrightarrow{0}$.
(d) Is the matrix A invertible? If so, tell me its inverse.

