This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, **both students will receive a score of zero**. There are 6 problems and 7 pages. Each page is worth 6 points, for a total of 42 points.

Problem 1. Consider the points
$$\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\vec{y} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ in the Cartesian plane.

(a) Draw the collection of points $s\vec{x} + t\vec{y}$ where $0 \le s \le 1$ and $0 \le t \le 1$.

(b) Draw the collection of points $t\vec{x} + t\vec{y}$ for all t.

(c) Draw the collection of points $t\vec{x} + (1-t)\vec{y}$ for all t.

Problem 2. Consider the same vectors $\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ from Problem 1.

(a) Compute the lengths of \vec{x} and \vec{y} .

(b) Compute the cosine of the angle between \vec{x} and \vec{y} .

(c) Compute the otrhogonal projection of the point \vec{x} onto the line $t\vec{y}$.

Problem 3. Consider the vectors $\vec{u} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ in \mathbb{R}^3 .

(a) Find a vector in \mathbb{R}^3 that is perpendicular to **both** of the vectors \vec{u} and \vec{v} .

(b) Use your answer from part (a) to find the equation of the plane $s\vec{u} + t\vec{v}$.

(c) Compute the 3×3 matrix that projects orthogonally onto the plane from part (b).

Problem 4. Consider the following system of 3 linear equations in 4 unknowns:

ſ	x_1	+	x_2	+	x_3	+	x_4	=	1
- {	$\begin{array}{c} x_1\\ 2x_1 \end{array}$	+	$2x_2$	+	$3x_3$	+	$4x_4$	=	2
l	$3x_1$	+	$3x_2$	+	$4x_3$	+	$5x_4$	=	3

(a) Put the system in Reduced Row Echelon Form (RREF).

(b) Tell me the pivot and non-pivot variables.

(c) Write down the complete solution of the system.

Problem 5. Consider the matrix $T = \begin{pmatrix} 0.4 & 0.8 \\ 0.6 & 0.2 \end{pmatrix}$.

(a) Write down the characteristic equation of the matrix T. I'll just tell you that its two roots are 1 and -0.4 (you don't have to check this).

(b) Find an eigenvector of T corresponding to eigenvalue $\lambda = 1$.

(c) Find an eigenvector of T corresponding to eigenvalue $\lambda = -0.4$.

(d) Express $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ as a linear combination of the eigenvectors from parts (b) and (c).

(e) Finally, consider the linear recurrence relation $\vec{v}_n = T\vec{v}_{n-1}$ with initial condition $\vec{v}_0 = (3, 4)$. Use all of your previous work to find a "closed form" solution for the *n*-th vector \vec{v}_n .

Problem 6. Let A be a square matrix.

(a) If A is invertible, explain why $\lambda = 0$ cannot be an eigenvalue of A. [Hint: Suppose that we have $A\vec{x} = 0\vec{x} = \vec{0}$ for some vector $\vec{x} \neq \vec{0}$. Then ...]

(b) If A is invertible and λ is an eigenvalue of A, explain why λ^{-1} is an eigenvalue of the inverse matrix A^{-1} . [Hint: Suppose that we have $A\vec{x} = \lambda\vec{x}$ for some vector $\vec{x} \neq \vec{0}$. Then ...]

(c) Suppose that A is a 2×2 matrix with eigenvalues $\lambda = 3$ and $\lambda = 4$. In this case, tell me the eigenvalues of the matrix A^n .

This is a closed book test. No electronic devices are allowed. If two students submit exams in which any solution has been copied, **both students will receive a score of zero**. There are 7 pages and 7 problems.

Problem 1. Consider the plane x + 2y - z = 0 in \mathbb{R}^3 .

- (a) Tell me a normal vector to the plane.
- (b) Tell me a normal vector of length 1.

(c) Compute the matrix Q that projects orthogonally onto the normal line.

(d) Compute the matrix P that projects orthogonally onto the plane. [Hint: Use your answer from part (c) to save time.]

Problem 2. The following matrix rotates vectors in \mathbb{R}^2 counterclockwise by 53.13°:

$$R = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}.$$

(You can just believe this. You don't have to show it.)

(a) Rotate the column vector (1,1) counterclockwise by 53.13° .

(b) Compute the matrix that rotates vectors **clockwise** by 53.13°.

(c) Rotate the column vector (1, 1) clockwise by 53.13° .

(d) Compute the matrix that rotates **counterclockwise** by $106.26^{\circ} (= 2 \times 53.13^{\circ})$.

Problem 3. Consider the following three planes in \mathbb{R}^3 :

$$x + y + z = 0, (1)$$

$$x + 2y - z = 0, (2)$$

$$x + 0y + z = 1. (3)$$

(a) Compute the intersection of the **first and second planes**. [Hint: It's a line.]

(b) Compute the intersection of second and third planes. [Hint: It's a line.]

(c) Compute the intersection of the lines from parts (a) and (b). [Hint: It's a point.]

Problem 4. Consider the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

(a) Use the Gauss-Jordan method to compute the inverse of A.

(b) Solve the system $A\vec{x} = \begin{pmatrix} 3\\1\\2 \end{pmatrix}$. [Hint: Use your answer from (a) to save time.]

Problem 5. Consider the following system:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & b \\ 0 & 1 & 1 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}.$$

Tell me some values for b and c such that

(a) the system has a **unique solution** \vec{x} .

(b) the system has no solution \vec{x} .

(c) the system has infinitely many solutions \vec{x} .

Problem 6. Consider the matrix $A = (\vec{a}_1 \ \vec{a}_2 \ \cdots \ \vec{a}_m)$, where \vec{a}_i is the *i*th column. Suppose that A has n rows, so the columns are vectors in \mathbb{R}^n .

(a) Let \vec{x} be a vector in \mathbb{R}^n . Write a single matrix equation to say that \vec{x} is perpendicular to all the columns of A.

- (b) You can think of your matrix equation from part (a) as a system of **how many** linear equations, in **how many** unknowns?
- (c) The solution to your equation in part (a) most likely has how many dimensions?

(d) Now let \vec{b} be any point in \mathbb{R}^n and let \vec{p} be the point in the column space of A that is **closest** to \vec{b} . Write a formula for \vec{p} in terms of A and \vec{b} .

Problem 7. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n with $\vec{u}^T \vec{v} \neq 0$, and consider the $n \times n$ matrix $A = \frac{\vec{u} \vec{v}^T}{\vec{u}^T \vec{v}}.$

(a) For all vectors \vec{x} , show that $A\vec{x}$ is on the line generated by \vec{u} .

(b) The line generated by \vec{u} is an eigenspace for A. What is the eigenvalue?

(c) Now let \vec{x} be any vector **perpendicular** to \vec{v} . Show that $A\vec{x} = \vec{0}$.

(d) Is the matrix A invertible? If so, tell me its inverse.