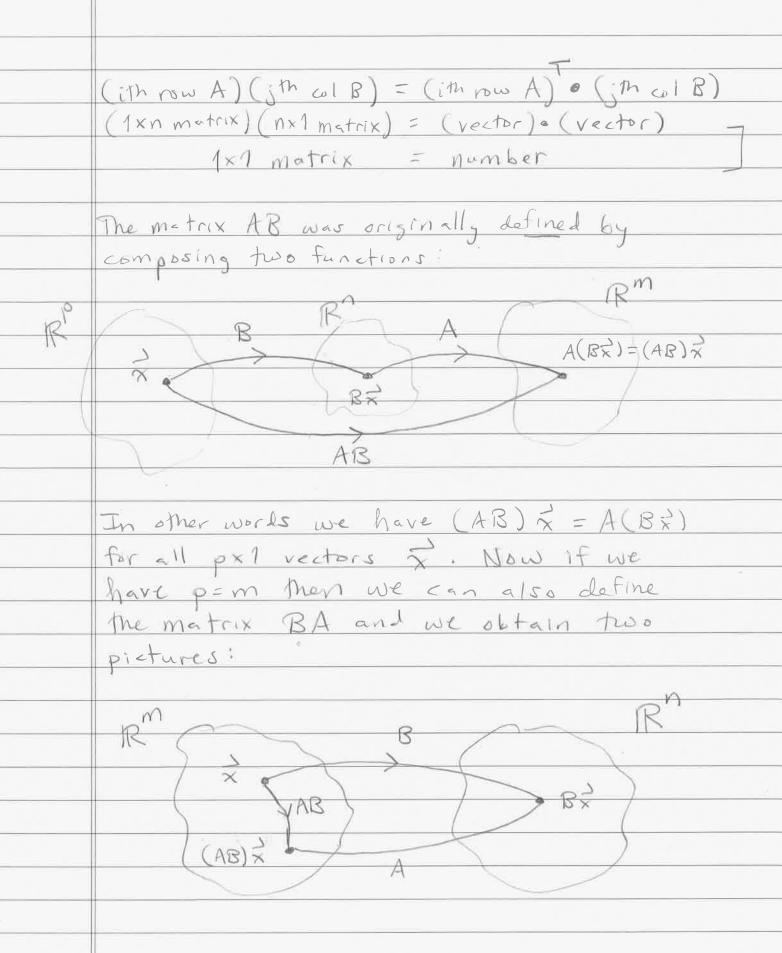
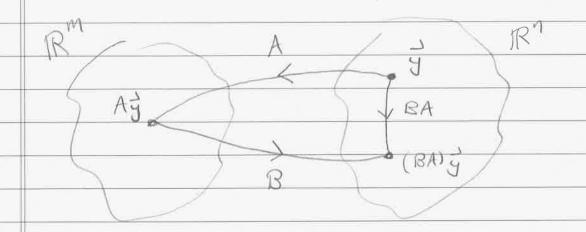
Review for Exam 2

The exam will cover the material from
HW4, 5, 6 and The corresponding Course
Notes. First we need to remember the
properties of matrix multiplication.
Let A be an Mxn matrix and
let B be an nxp matrix than the
mxp product matrix AB satisfies
(i,j)th entry of AB = (ith now A) (jth col B)
,
(ith row of AB) = (ith row A) B
(jth col of AB) = A (jth col B).
[Note that (ith row A) is a 1×n matrix
and (jth col B) is an nx1 matrix.
Their metrix product to the same as
the good old dot product of vectors:





If both of AB & BA are "do nothing"
functions, i.e., if

AB = Im & BA = In

then we will say that A&B are inverses of each other.

But I discussed in class that this is impossible when m = n. (Idea: If m < n then RREF(A) has a non-pivot column which implies that A has a non-trivial now relation, But then if BA = In then the formula

(jth col In) = B (jth col A)

implies that In has a non-trivial column relation, which is impossible.

If M=n then then the nxn matrix A might have an inverse, Suppose it does, i.e., suppose that there exists on nxn matrix B such that

AB = In & BA = In.

To compute this matrix B we will solve the linear systems

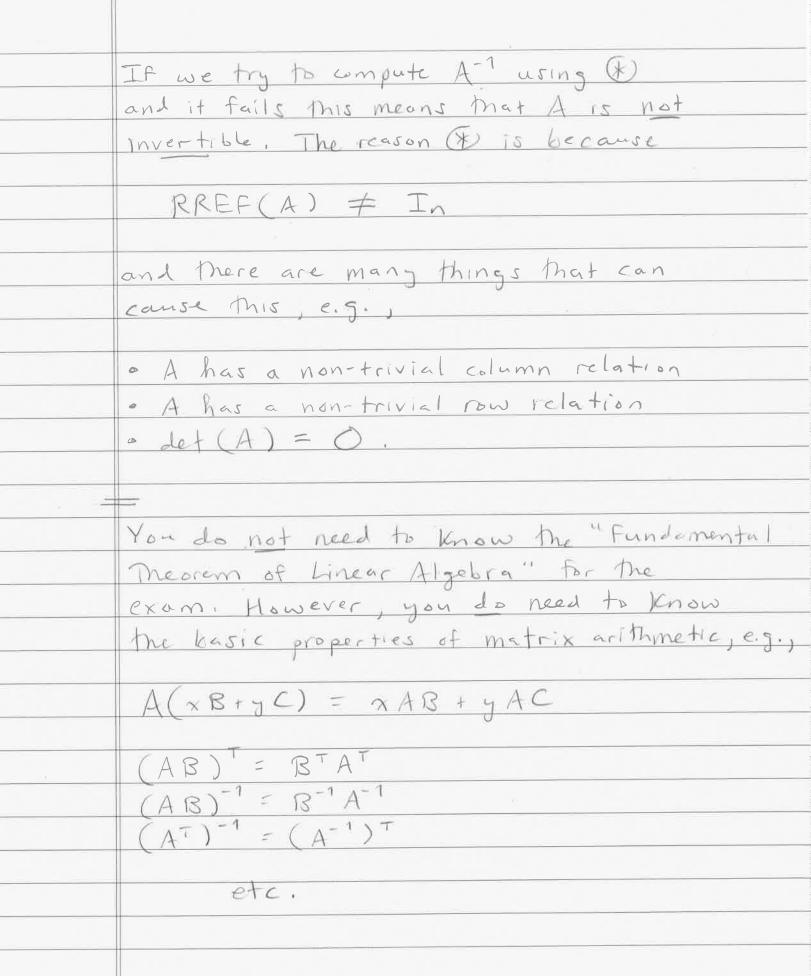
A (jth al B) = (jth col In)

to get the columns of B. All of These systems can be solved simultaneously with a trick!

(A) (A | In | B).

[Remark: The matrix B is unique so we call it "The" inverse of A and we write B= "A-1". Indeed, if we also have AC = In & CA = In then it follows that

C = CIn = C(AB) = (CA)B = In B = B.



We discussed 'orthogonal projection' and its applications to "least squares regression".

Suppose we want to find the line C+tD=b

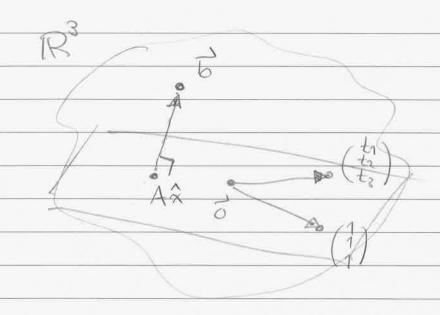
that is closest to the data points

 $\begin{pmatrix} t_1 \\ b_1 \end{pmatrix}$, $\begin{pmatrix} t_2 \\ b_2 \end{pmatrix}$, $\begin{pmatrix} t_3 \\ b_3 \end{pmatrix}$,

First we write down the silly equations

11 A x = 6"

This equation probably has no solution because the three points probably don't lie on a line. Alternatively, this means that the point to in R3 does not lie in the plane Ax = C(1,1,1) + D(t,t,t) which is the "column space" of the matrix A:



Gauss' idea is to replace to by the closest point A2 in the column space.

This will be accomplished when the error vector $\vec{e} := \vec{b} - A2$ is perpendicular to all of the columns of \vec{A} (the plane in the picture). We can express this condition with one matrix equation

(*) AT = 0

After substituting == 6-A2, this & becomes the "normal equation"

ATA & = AT6

Now we can solve this to find &= (C,D) and hence the best fit line: C+tD=b e2 The vertical errors are the entries of the error yector: $\vec{e} = \vec{b} - A\hat{x} = \left(b_1 - (C + t_1 D) \right) = \left(e_1 \right)$ b2-(C+t2D) 63- (C+t3D) and the best fit line is "best" in the sense mat $\|\vec{e}\|^2 = e_1^2 + e_2^2 + e_3^2$ is as small as possible.

Least squares regression applies to a much broader range of problems. Given (almost)

any linear system A = & with no

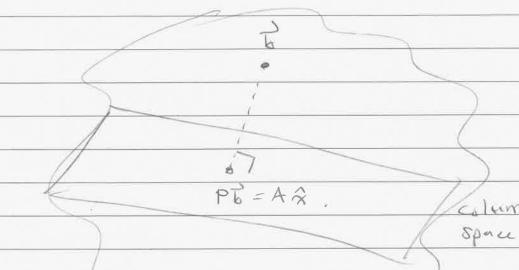
solution, you can find the "best approximate solution" & by solving

ATA & = ATE

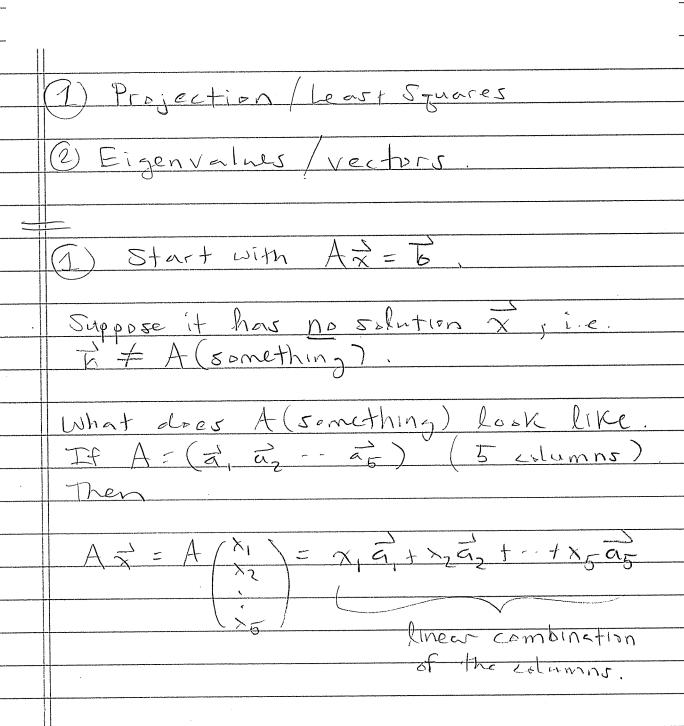
The geometry behind this is to project to orthogonally onto the column space of A by using the projection matrix

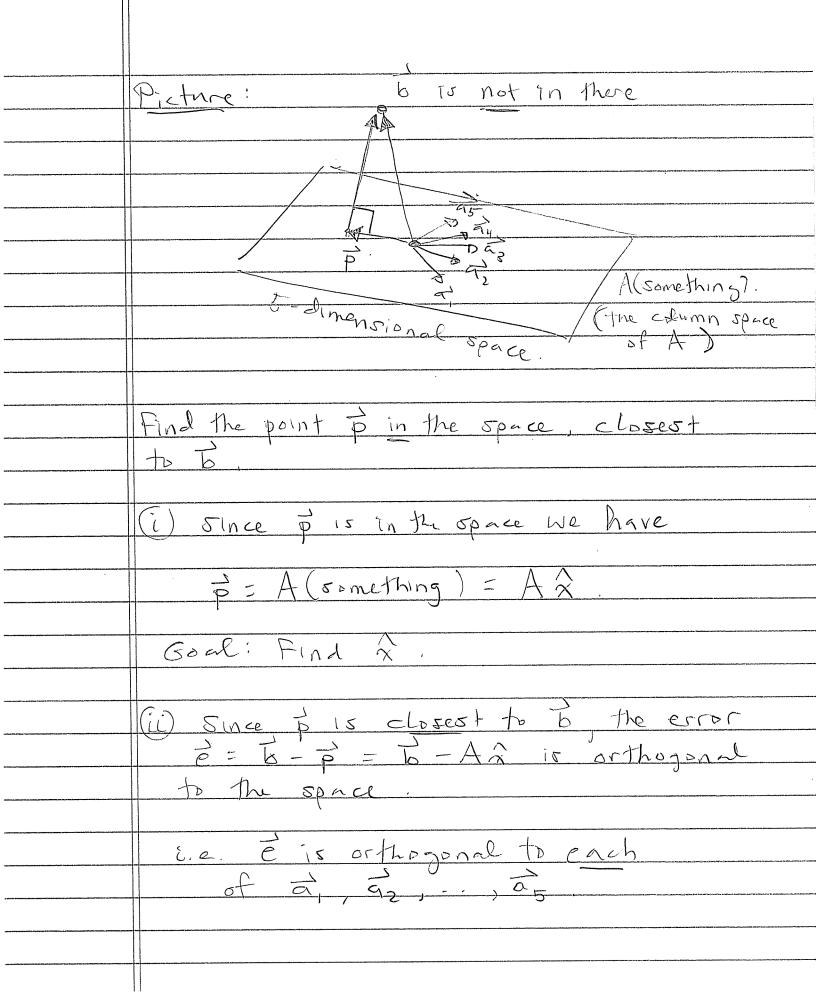
P = A (ATA) -1 AT.

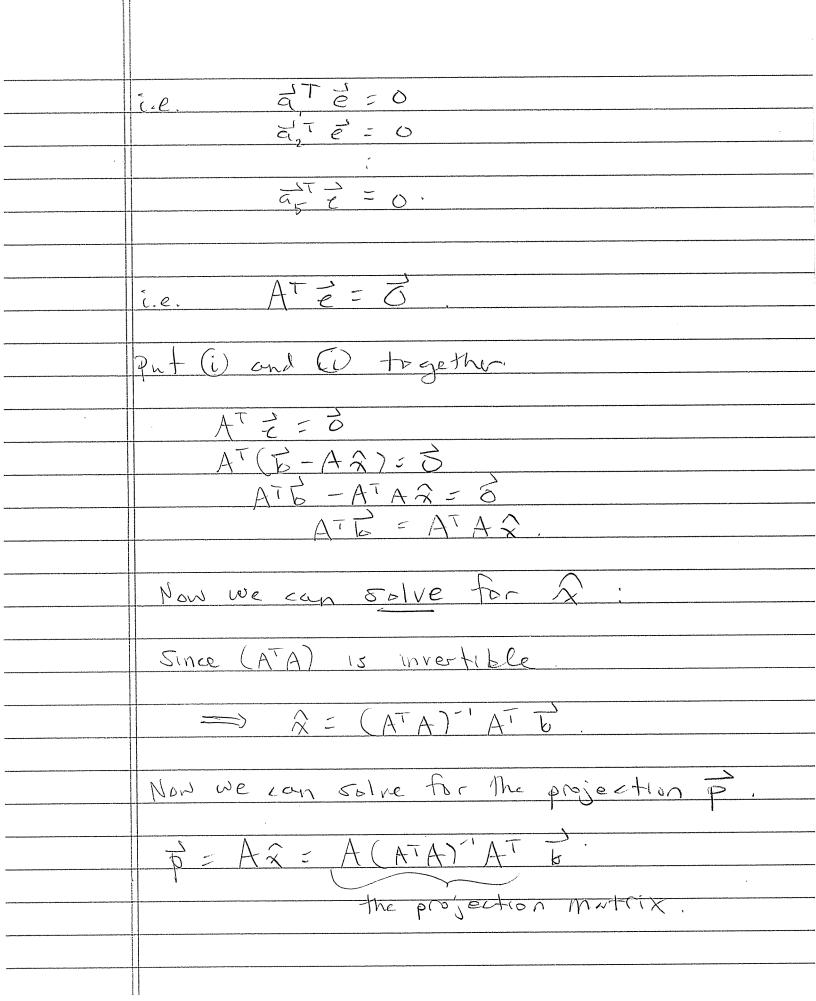
Picture:

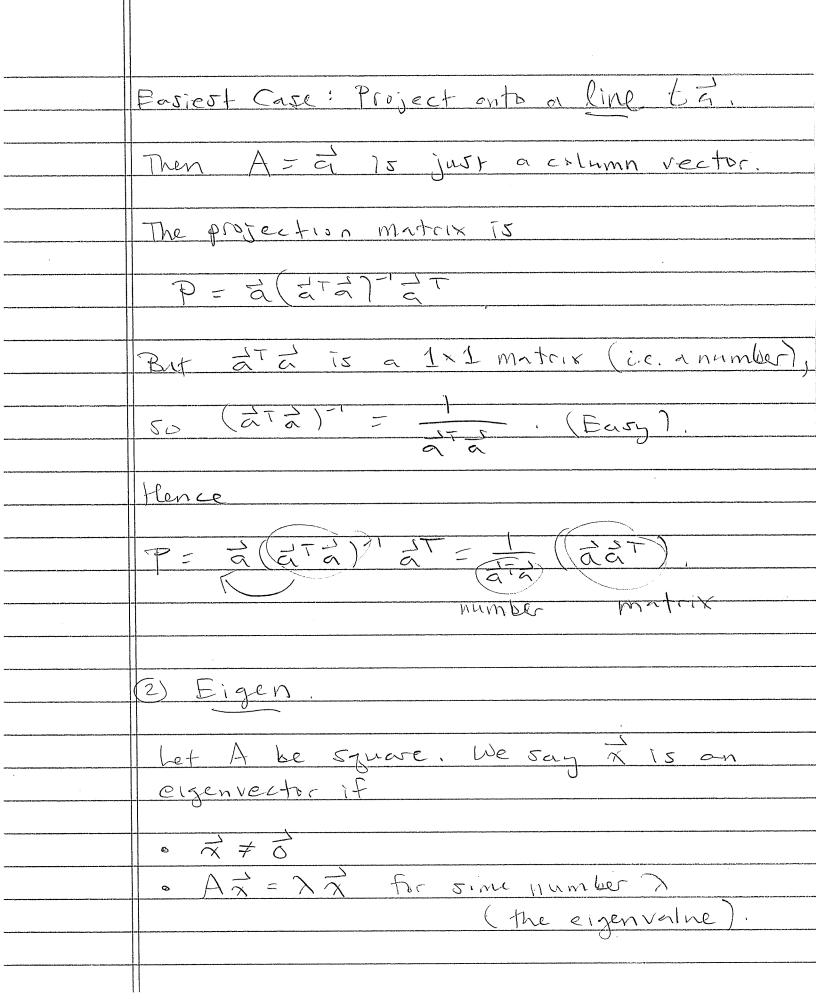


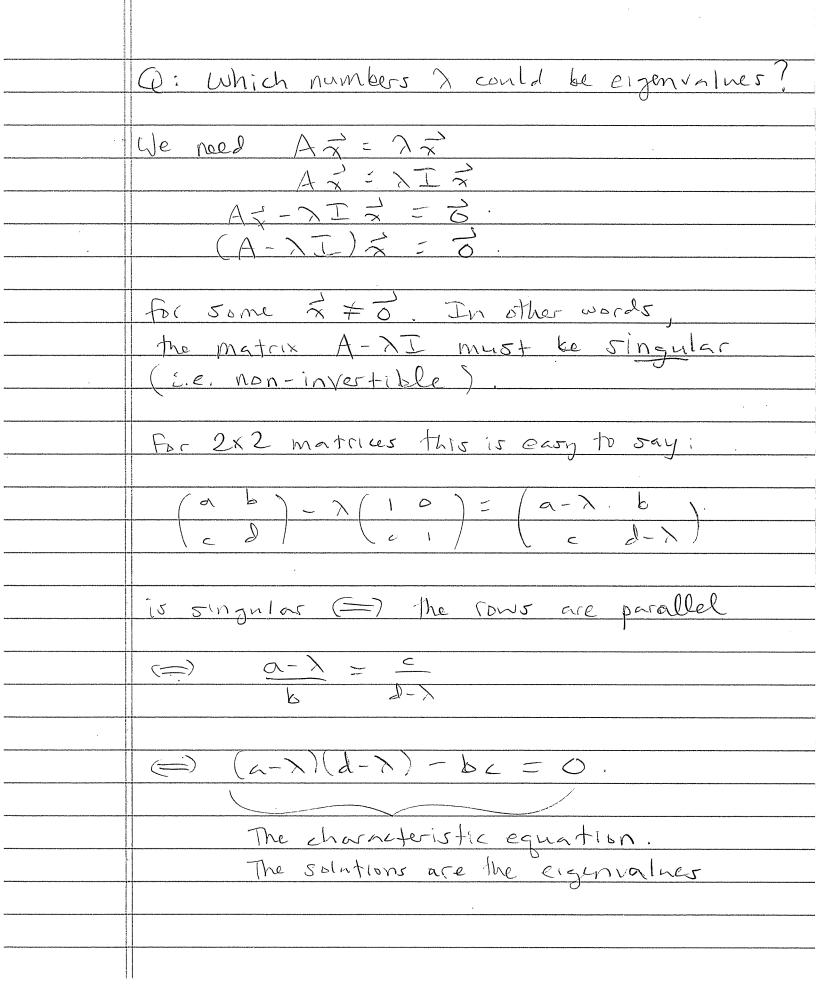
More Review











Remark: Another language says $det(A-\lambda I) = 0$ Once you get the eigenvalues, the eigenvalues, the Just solve (A-XI) = 6 using your favorite method. Q: Who Cores? If you want to solve a linear recurrence Vn+1 = AVn (i) Find the eigenvectors $A\vec{x}_1 = \lambda_1\vec{x}_1$ $A\vec{x}_2 = \lambda_2\vec{x}_2$ (ii) Express Vo = 5x, + tx2. (iii) The solution is V = An V = s Anx, + t Anx = s(x), x, + t(x2), x2. Enjog!