Each problem is worth 2 points.

1. Compute the derivative of $f(x)=x^{2}+2^{x}$.

$$
f^{\prime}(x)=\left(x^{2}\right)^{\prime}+\left(2^{x}\right)^{\prime}=2 x+\ln (2) \cdot 2^{x} .
$$

2. Use integration by parts to compute the most general antiderivative of $g(x)=x \cdot \ln (x)$.

Let $f(x)=\ln (x)$ and $g^{\prime}(x)=x$, so that $f^{\prime}(x)=1 / x$ and $g(x)=x^{2} / 2$. Then we have

$$
\begin{aligned}
\int f(x) g^{\prime}(x) d x & =f(x) g(x)-\int f^{\prime}(x) g(x) d x \\
\int x \cdot \ln (x) d x & =\frac{1}{2} x^{2} \ln (x)-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \cdot \frac{1}{2} x^{2}+C \\
& =\frac{1}{2} x^{2}\left(\ln (x)-\frac{1}{2}\right)+C .
\end{aligned}
$$

3. Compute the derivative of $h(x)=x^{x}$.

There are two ways to do this.

- First, we could write $h(x)=x^{x}=\left(e^{\ln (x)}\right)^{x}=e^{(x \ln (x))}$. Then we use the chain and product rules:

$$
\begin{aligned}
h^{\prime}(x) & =e^{(x \ln (x))} \cdot(x \ln (x))^{\prime} \\
& =e^{(x \ln (x))}\left(1 \cdot \ln (x)+x \cdot \frac{1}{x}\right) \\
& =x^{x}(\ln (x)+1) .
\end{aligned}
$$

- Second, we could take the natural log of both sides to get $\ln (h)=\ln \left(x^{x}\right)=x \ln (x)$.

Then we apply $\frac{d}{d x}$ to both sides to get

$$
\begin{aligned}
\frac{d}{d x} \ln (h) & =\frac{d}{d x}(x \ln (x)) \\
\frac{1}{h} \cdot \frac{d h}{d x} & =1 \cdot \ln (x)+x \cdot \frac{1}{x} \\
\frac{d h}{d x} & =h(\ln (x)+1) \\
h^{\prime}(x) & =x^{x}(\ln (x)+1) .
\end{aligned}
$$

4. Use the method of substitution to compute $\int_{0}^{1} \frac{x}{x^{2}+1} d x$.

We will use the substitution $u=x^{2}+1$, so that $d u=2 x d x$. Then we have

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}+1} d x & =\int_{0}^{1} \frac{1}{u}(x d x) \\
& =\int_{1}^{2} \frac{1}{u}\left(\frac{d u}{2}\right) \\
& =\frac{1}{2} \int_{1}^{2} \frac{1}{u} d u \\
& =\left.\frac{1}{2} \ln |u|\right|_{1} ^{2} \\
& =\frac{1}{2}(\ln (2)-\ln (1))
\end{aligned}
$$

5. When $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, the function arcsin is defined by

$$
y=\arcsin (x) \quad \Longleftrightarrow \quad x=\sin (y)
$$

Apply $\frac{d}{d x}$ to both sides of the equation $x=\sin (y)$ and then use this to compute $\frac{d y}{d x}$. You do not need to simplify your answer.

First we have

$$
\begin{aligned}
\frac{d}{d x} x & =\frac{d}{d x} \sin (y) \\
1 & =\cos (y) \cdot \frac{d y}{d x}
\end{aligned}
$$

Then solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{1}{\cos (y)}=\frac{1}{\cos (\arcsin (x))}
$$

We weren't asked to simplify this, but if we remember that $\cos (\arcsin (x))=\sqrt{1-x^{2}}$ we can write

$$
\frac{d}{d x} \arcsin (x)=\frac{1}{\cos (\arcsin (x))}=\frac{1}{\sqrt{1-x^{2}}} .
$$

