Each problem is worth 2 points.

1. Compute the most general antiderivative of $f(x)=x^{2}-2 x+3$.

Using the power rule $\int x^{p} d x=\frac{1}{p+1} x^{p+1}$ (when $p \neq-1$) gives

$$
\int f(x) d x=\int x^{2} d x-2 \int x d x+3 \int 1 d x=\frac{1}{3} x^{3}-2 \frac{1}{2} x^{2}+3 x+C,
$$

where C is an arbitrary constant.
2. Suppose that $s^{\prime \prime}(t)=-10$ for all t. Compute $s(t)$ assuming that $s^{\prime}(0)=2$ and $s(0)=5$.

First we compute

$$
s^{\prime}(t)=\int s^{\prime \prime}(t) d t=\int-10 d t=-10 t+C .
$$

Since $2=s^{\prime}(0)=-10(0)+C=C$ we conclude that

$$
s^{\prime}(t)=-10 t+2 .
$$

Then we compute

$$
s(t)=\int s^{\prime}(t) d t=\int(-10 t+2) d t=-10 \frac{1}{2} t^{2}+2 t+D=-5 t^{2}+2 t+D .
$$

Since $5=s(0)=-5(0)^{2}+2(0)+D=D$ we conclude that

$$
s(t)=-5 t^{2}+2 t+5 .
$$

3. Let c be constant. Evaluate the integral $\int_{a}^{b} c d x$.

There are two ways to do this. First, we could note that the graph of $f(x)=c$ is a horizontal line at height c. The region between this and the x-axis from $x=a$ to $x=b$ is a rectangle with width $b-a$ and height c, so it has area $c(b-a)$. On the other hand, we could note that $F(x)=c x$ is an antiderivative of $f(x)=c$ and then use the F.T.C.:

$$
\int_{a}^{b} c d x=F(b)-F(a)=c b-c a=c(b-a) .
$$

4. The following picture shows the graph of $g(x)$. Use this to compute $\int_{0}^{6} g(x) d x$.

The integral computes the area above the graph (in pink) minus the area below the graph (in blue). The area above the graph is two triangles with areas $2 \cdot 2 / 2=2$ and $1 \cdot 1 / 2=1 / 2$. The area below the graph is a square and two triangles, so it has area $1 \cdot 1 / 2+1 \cdot 1+1 \cdot 1 / 2=2$. Therefore,

$$
\int_{0}^{6} g(x) d x=2-2+1 / 2=1 / 2
$$

5. Evaluate the integral $\int_{1}^{2} \sqrt{t}(1+t) d t$.

Let $f(t)=\sqrt{t}(1+t)$. First we expand to get $f(t)=\sqrt{t}+\sqrt{t} t=t^{1 / 2}+t^{3 / 2}$. One particular antiderivative of this is

$$
F(t)=\frac{t^{3 / 2}}{3 / 2}+\frac{t^{5 / 2}}{5 / 2}=\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}
$$

Then the F.T.C. gives

$$
\begin{aligned}
\int_{1}^{2} f(t) & =F(2)-F(1) \\
& =\left(\frac{2}{3}(2)^{3 / 2}+\frac{2}{5}(2)^{5 / 2}\right)-\left(\frac{2}{3}(1)^{3 / 2}+\frac{2}{5}(1)^{5 / 2}\right) \\
& =\left(\frac{2}{3} \cdot 2 \sqrt{2}+\frac{2}{5} \cdot 2^{2} \sqrt{2}\right)-\left(\frac{2}{3}+\frac{2}{5}\right) \\
& =\left(\frac{4}{3} \sqrt{2}+\frac{8}{5} \sqrt{2}\right)-\left(\frac{2}{3}+\frac{2}{5}\right) \\
& =\frac{44}{15} \sqrt{2}-\frac{16}{15}
\end{aligned}
$$

[Remark: You did not need to simplify.]

