Problems 1 and 2 refer to the function $f(x)=\frac{1}{3} x^{3}-x$.

1. [3 points] Compute $f^{\prime}(x)$ and show that $f^{\prime}(x)=0$ when $x=-1$ or $x=+1$. Determine when $f(x)$ is increasing or decreasing.

We have

$$
f^{\prime}(x)=\frac{1}{3} 3 x^{2}-1=x^{2}-1=(x+1)(x-1)
$$

and we conclude that $f^{\prime}(x)=(x+1)(x-1)=0$ when $(x+1)=0$ (i.e., $x=-1$) or $(x-1)=0$ (i.e., $x=+1$). When $\mathbf{x}<-\mathbf{1}$ we have $(x+1)<0$ and $(x-1)<0$, hence $f^{\prime}(x)=(x+1)(x-1)>0$, i.e., $f(x)$ is increasing. When $-\mathbf{1}<\mathbf{x}<\mathbf{1}$ we have $(x+1)>0$ and $(x-1)<0$, hence $f^{\prime}(x)=(x+1)(x-1)<0$, i.e., $f(x)$ is decreasing. Finally, when $\mathbf{1}<\mathbf{x}$ we have $(x+1)>0$ and $(x-1)>0$, hence $f^{\prime}(x)=(x+1)(x-1)>0$, i.e., $f(x)$ is increasing.
2. [3 points] Compute $f^{\prime \prime}(x)$ and determine when the graph of $f(x)$ is concave up or concave down. Determine whether $x=-1$ and $x=+1$ are maxima or minima (or neither).

First we compute

$$
f^{\prime \prime}(x)=\left(x^{2}-1\right)^{\prime}=2 x .
$$

Note that $f^{\prime \prime}(x)=0$ when $x=0$ (here f has an inflection), $f^{\prime \prime}(x)<0$ when $x<0$ (here f is concave down) and $f^{\prime \prime}(x)>0$ when $x>0$ (here f is concave up). In particular, we have $f^{\prime \prime}(-1)<0$ and $f^{\prime \prime}(+1)>0$, so $x=-1$ is a maximum and $x=+1$ is a minimum.

I didn't ask you to draw it, but here is the graph of $f(x)$ for refence:

For problems 3 and 4, suppose that x and y are quantities related by $y=\frac{1}{+\sqrt{3+x^{2}}}$.
3. [2 points] Compute $\frac{d y}{d x}$.

First we write $y=\left(3+x^{2}\right)^{-1 / 2}$. Then we use the chain rule to compute

$$
\frac{d y}{d x}=-\frac{1}{2}\left(3+x^{2}\right)^{-3 / 2}\left(3+x^{2}\right)^{\prime}=\frac{-1}{2\left(3+x^{2}\right)^{3 / 2}}(2 x)=\frac{-x}{\left(3+x^{2}\right)^{3 / 2}} .
$$

4. [$\mathbf{2}$ points] Suppose we measure x to find $x=1$ unit with a possible error of $d x=0.1$ units. Compute the value of y and use your answer from Problem 3 to estimate the possible error in y.

When $x=1$ the value of y is $\frac{1}{+\sqrt{3+1^{2}}}=\frac{1}{+\sqrt{4}}=\frac{1}{2}$.
From Problem 3 we have

$$
\begin{aligned}
d y & =\frac{-x}{\left(3+x^{2}\right)^{3 / 2}} d x \\
& =\frac{-1}{\left(3+1^{2}\right)^{3 / 2}}(0.1) \\
& =\frac{-1}{4^{3 / 2}}(0.1) \\
& =\frac{-1}{8}(0.1) \\
& =-0.125 .
\end{aligned}
$$

Thus, if $x=1 \pm 0.1$ we conclude that $y=0.5 \pm 0.125$.

