Compute the following limits, or say why they do not exist.

1. $\lim _{x \rightarrow 1} \frac{x^{2}-4}{x-2}$

Here we can just plug in $x=1$ to get

$$
\lim _{x \rightarrow 1} \frac{x^{2}-4}{x-2}=\frac{1^{2}-4}{1-2}=\frac{-3}{-1}=3
$$

2. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

Here the limit has indeterminate form " $0 / 0$ " so we need a trick. We factor the numerator to obtain

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)} \\
& =\lim _{x \rightarrow 2}(x+2) \\
& =2+2 \\
& =4 .
\end{aligned}
$$

3. $\lim _{n \rightarrow \infty} \frac{1+1 / n}{\cos (\pi / n)}$

First note that $\lim _{n \rightarrow \infty} \cos (\pi / n)=\cos \left(\lim _{n \rightarrow \infty} \pi / n\right)=\cos (0)=1$ and $\lim _{n \rightarrow \infty} 1 / n=0$. Thus we have

$$
\lim _{n \rightarrow \infty} \frac{1+1 / n}{\cos (\pi / n)}=\frac{1+\lim _{n \rightarrow \infty} 1 / n}{\lim _{n \rightarrow \infty} \cos (\pi / n)}=\frac{1+0}{1}=1
$$

4. $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$

Here the limit has indeterminate form " $\infty-\infty$ " so we need a trick. First we find a common denominator and then simplify to obtain

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right) & =\lim _{t \rightarrow 0}\left(\frac{t^{2}+t}{t\left(t^{2}+t\right)}-\frac{t}{t\left(t^{2}+t\right)}\right) \\
& =\lim _{t \rightarrow 0} \frac{\left(t^{2}+t\right)-t}{t\left(t^{2}+t\right)} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}(t+1)} \\
& =\lim _{t \rightarrow 0} \frac{1}{t+1} \\
& =\lim _{t \rightarrow 0} \frac{1}{0+1} \\
& =1 .
\end{aligned}
$$

5. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right)$

Here the limit has indeterminate form " $\infty-\infty$ " so we need a trick. We multiply and divide by the conjugate expression to obtain

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right) & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right) \frac{\sqrt{x^{2}+4 x+1}+x}{\sqrt{x^{2}+4 x+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}+4 x+1\right)-x^{2}}{\sqrt{x^{2}+4 x+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x+1}{\sqrt{x^{2}+4 x+1}+x}
\end{aligned}
$$

Now we have a limit of indeterminate form " ∞ / ∞ " so we need another trick. We multiply the numerator and denominator both by $1 / x$ to obtain

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{4 x+1}{\sqrt{x^{2}+4 x+1}+x} & =\lim _{x \rightarrow \infty} \frac{4+1 / x}{(1 / x) \sqrt{x^{2}+4 x+1}+1} \\
& =\lim _{x \rightarrow \infty} \frac{4+1 / x}{\sqrt{1 / x^{2}} \sqrt{x^{2}+4 x+1}+1} \\
& =\lim _{x \rightarrow \infty} \frac{4+1 / x}{\sqrt{1+4 / x+1 / x^{2}}+1} \\
& =\frac{4+0}{\sqrt{1+0+0}+1} \\
& =2 .
\end{aligned}
$$

