
Math 161 Summer 2015
Homework 5 Solutions Drew Armstrong

Book Problems:

• Chap 4.5 Exercises 2, 8, 14
• Chap 5.2 Exercises 16, 20, 56
• Chap 5.4 Exercises 42, 44, 46
• Chap 5.6 Exercises 8, 16
• Chap 6.1 Exercises 2, 14, 30

Additional Problems:

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two
different ways: ∫ r

−r

√
r2 − x2 dx

(a) Interpret this integral as the area of a shape you know.
(b) Use the substitution x = r sin θ and the trigonometric identities

1− sin2 θ = cos2 θ and cos2 θ =
1

2
cos(2θ) +

1

2
.

Then use the substitution u = 2θ.

Solutions:

4.5.2. Evaluate the integral
∫
x3(2 + x4)5 dx using the substitution u = 2 + x4.

Since u = 2 + x4 we have du = 4x3 dx and hence∫
x3(2 + x4)5 dx =

∫
x3(u)5 dx

=

∫
u5 x3dx

=

∫
u5
(
du

4

)
=

1

4

∫
u5 du

=
1

4
· 1

6
u6 + C

=
1

24
(2 + x4)6 + C,

where C is an arbitrary constant.

4.5.8. Evaluate the integral
∫
x2 cos(x3) dx.

We will use the substitution u = x3, so that du = 3x2 dx. Then we have∫
x2 cos(x3) dx =

∫
x2 cos(u) dx



=

∫
cos(u)x2dx

=

∫
cos(u)

(
du

3

)
=

1

3

∫
cos(u) du

=
1

3
sin(u) + C

=
1

3
sin(x3) + C,

where C is an arbitrary constant.

4.5.14. Evaluate the integral
∫

x
(x2+1)2

dx.

We will use the substitution u = x2 + 1, so that du = 2x dx. Then we have∫
x

(x2 + 1)2
dx =

∫
x

u2
dx

=

∫
1

u2
xdx

=

∫
1

u2

(
du

2

)
=

1

2

∫
u−2 du

=
1

2
· u
−1

−1
+ C

= − 1

2u
+ C

= − 1

2(x2 + 1)
+ C,

where C is an arbitrary constant.

5.2.16. Differentiate f(x) = x ln(x)− x.

We use the product rule to compute

f ′(x) = (x ln(x)− x)′

= (x ln(x))′ − 1

= (x)′ ln(x) + x(ln(x))′ − 1

= ln(x) + x · 1

x
− 1

= ln(x) + 1− 1

= ln(x).

[Remark: Hey, we just discovered by accident that∫
ln(x) dx = x ln(x)− x+ C.



That was lucky!]

5.2.20. Differentiate y = 1
ln(x) .

First we write y = (ln(x))−1. Then we use the chain rule to get

dy

dx
= (−1)(ln(x))−2 · (ln(x))′ = − 1

(ln(x))2
· 1

x
= − 1

x(ln(x))2
.

5.2.56. Evaluate the integral
∫ 3
0

dx
5x+1 .

We use the substitution u = 5x+ 1, so that du = 5 dx. Then we have∫ x=3

x=0

dx

5x+ 1
dx =

∫ x=3

x=0

dx

u

=

∫ x=3

x=0

du/5

u

=
1

5

∫ u=16

u=1

1

u
du

=
1

5
ln |u|

∣∣∣∣u=16

u=1

=
1

5
(ln(16)− ln(1))

= 0.5545

5.4.42. Evaluate the integral
∫

(x5 + 5x) dx.

Here we just have to remember or look up the rules:∫
(x5 + 5x) dx =

∫
x5 dx+

∫
5x dx

=
1

6
· x6 +

1

ln(5)
· 5x + C,

where C is an arbitrary constant.

5.4.44. Evaluate the integral
∫
x2x

2
dx.

Here we use the substitution u = x2, so that du = 2x dx. Then we have∫
x2x

2
dx =

∫
x2u dx

=

∫
2u xdx

=

∫
2u
(
du

2

)
=

1

2

∫
2u dx

=
1

2
· 1

ln(2)
· 2u + C



=
2x

2

2 ln(2)
+ C,

where C is an arbitrary constant.

5.4.46. Evaluate the integral
∫

2x

2x+1 dx.

Here we use the substitution u = 2x + 1, so that du = ln(2) · 2x dx. Then we have∫
2x

2x + 1
dx =

∫
2x

u
dx

=

∫
1

u
2xdx

=

∫
1

u

(
du

ln(2)

)
=

1

ln(2)

∫
1

u
du

=
1

ln(2)
· ln |u|+ C

=
ln |2x + 1|

ln(2)
+ C

=
ln(2x + 1)

ln(2)
+ C

= log2(2
x + 1) + C,

where C is an arbitrary constant. [Remark: The last two steps of simplification were not
necessary.]

5.6.8. Simplify the expression tan(sin−1 x).

There are two ways to do this problem.

(1) Well, one thing we do know is that sin(sin−1 x) = x. [This is the definition of sin−1.]
So we have

tan(sin−1 x) =
sin(sin−1 x)

cos(sin−1(x)
=

x

cos(sin−1 x)
.

Now we have to compute cos(sin−1 x). First we recall that

cos2 θ + sin2 θ = 1

for any θ. Then we substitute θ = sin−1 x to get

cos2(sin−1) + sin2(sin−1 x) = 1

cos2(sin−1) + x2 = 1

cos2(sin−1) = 1− x2

cos(sin−1 x) =
√

1− x2.

Finally we have

tan(sin−1 x) =
x

cos(sin−1 x)
=

x√
1− x2

.



(2) Let θ = sin−1 x, so that x = sin θ. Now let’s draw a right angled tringle with angle θ
and “hypotenuse” of length 1. Since x = sin θ, the length of the “opposite” side must
be x. Let ? be the length of the “adjacent” side.

The Pythagorean Theorem tells us that

?2 + x2 = 12

?2 = 1− x2

? =
√

1− x2.
Finally, we have

tan(sin−1) = tan θ =
“opposite”

“adjacent”
=

x√
1− x2

.

5.6.16. Find the derivative of the function tan−1(x2).

First we have to remember the formula

d

dx
tan−1(x) =

1

1 + x2
.

[If we didn’t remember the formula then we would have to rediscover it.] Then we use the
chain rule to compute

d

dx
tan−1(x2) =

1

1 + (x2)2
· d
dx
x2 =

2x

1 + x4
.

6.1.2. Evaluate the integral
∫
θ cos θ dθ using integration by parts, with u = θ and dv =

cos θ dθ.

Since u = θ we have du = dθ, and since dv = cos θ dθ we have v = sin θ. Then integration
by parts gives ∫

udv = uv −
∫
vdu∫

θ cos θ dθ = θ sin θ −
∫

sin θ dθ

= θ sin θ − (− cos θ) + C

= θ sin θ + cos θ + C,

where C is an arbitrary constant.

6.1.14. Evaluate the integral
∫
e−θ cos(2θ) dθ.

We will use integration by parts with f(θ) = cos(2θ) and g′(θ) = e−θ, so that f ′(θ) =
−2 sin(2θ) and g(θ) = −e−θ. Then we have∫

f(θ)g′(θ) dθ = f(θ)g(θ)−
∫
f ′(θ)g(θ) dθ



∫
e−θ cos(2θ) dθ = −e−θ cos(2θ)−

∫
2e−θ sin(2θ) dθ

= −e−θ cos(2θ)− 2

∫
e−θ sin(2θ) dθ.

Did that help? Now we have to evaluate the integral
∫
e−θ sin(2θ) dθ. Okay, let’s do it! Let

F (θ) = sin(2θ) and G′(θ) = e−θ, so that F ′(θ) = 2 cos(2θ) and G(θ) = −e−θ Then we have∫
F (θ)G′(θ) dθ = F (θ)G(θ)−

∫
F ′(θ)G(θ) dθ∫

e−θ sin(2θ) dθ = −e−θ sin(2θ)−
∫

2(−e−θ) cos(2θ) dθ

= −e−θ sin(2θ) + 2

∫
e−θ cos(2θ) dθ

Now we’re back to where we started. But that’s a good thing! Define

A :=

∫
e−θ cos(2θ) dθ.

Putting our two equations together gives

A = −e−θ cos(2θ)− 2

∫
e−θ sin(2θ) dθ

A = −e−θ cos(2θ)− 2(−e−θ sin(2θ) + 2A)

A = −e−θ cos(2θ) + 2e−θ sin(2θ)− 4A

5A = e−θ(2 sin(2θ)− cos(2θ))

A =
1

5
e−θ(2 sin(2θ)− cos(2θ)).

We conclude that ∫
e−θ cos(2θ) dθ =

1

5
e−θ(2 sin(2θ)− cos(2θ)) + C.

where C is an arbitrary constant.

[Remark: Good thing we didn’t lose our confidence when the first integration by parts didn’t work.]

6.1.30. First make a substitution and then use integration by parts to evaluate
∫ 4
1 e
√
x dx.

First we let u =
√
x, so that du = 1

2
√
x
dx. Then we have∫ x=4

x=1
e
√
x dx =

∫ x=4

x=1
eu 2
√
x du

=

∫ u=2

u=1
2ueu du.

Okay. Now we let f(u) = 2u and g′(u) = eu, so that f ′(u) = 2 and g(u) = eu. Then we have∫ u=2

u=1
f(u)g′(u) = f(u)g(u)|u=2

u=1 −
∫ u=2

u=1
f ′(u)g(u) du∫ 2

1
2ueu du = 2ueu|21 −

∫ 2

1
2eu du

= (2(2)e2 − 2(1)e1)− 2(e2 − e1)



= 4e2 − 2e− 2e2 + 2e

= 2e2.

And that’s the answer.

A1. Compute the integral
∫ r
−r
√
r2 − x2 dx in two ways.

(a) First we notice that this is just the area of a semicircle of radius r:

Hence
∫ r
−r
√
r2 − x2 dx = πr2

2 .

(b) Second, we will follow the hints to evaluate the integral by hand. Let x = r sin θ, so
that dx = r cos θ dθ. Then we have∫ √

r2 − x2 dx =

∫ √
r2 − r2 sin2 θ dx

=

∫ √
r2(1− sin2 θ) dx

=

∫ √
r2 cos2 θ dx

=

∫
r cos θ dx

=

∫
r cos θ(r cos θ dθ)

= r2
∫

cos2 θ dθ

= r2
∫ (

1

2
cos(2θ) +

1

2

)
dθ

=
r2

2

∫
(cos(2θ) + 1) dθ.

Then we make the substitution u = 2θ, so that du = 2dθ, to get

r2

2

∫
(cos(2θ) + 1) dθ =

r2

2

∫
(cos(u) + 1) dθ

=
r2

2
· 1

2

∫
(cos(u) + 1) du

=
r2

4
(sin(u) + u) + C,

where C is an arbitrary constant. Finally, since x = r sin θ we note that x goes from
−r to r as θ goes from −π/2 to π/2; and since u = 2θ we note that θ goes from −π/2



to π/2 as u goes from −π to π. We conclude that∫ x=r

x=−r

√
r2 − x2 dx =

r2

2

∫ θ=π/2

θ=−π/2
(cos(2θ) + 1) dθ

=
r2

4

∫ u=π

u=−π
(cos(u) + 1) du

=
r2

4
(sin(u) + u)

∣∣∣∣u=π
u=−π

=
r2

4
[(sin(π) + π)− (sin(−π) + (−π))]

=
r2

4
[(0 + π)− (0− π)]

=
r2

4
[2π]

=
πr2

2
.

Which method do you prefer?

[Remark: That was the final homework problem of the course. Now we have come full circle. On
HW1 Problem 1 we discussed Archimedes’ proof that the area of a circle is πr2. Here we used the
methods of Calculus to come up with a completely different proof. Calculus can be used to solve
a wide array of problems. And once you have some practice, it doesn’t really require that much
effort. We can all be Archimedes now.]


