Book Problems:

- Chap 4.5 Exercises 2, 8, 14
- Chap 5.2 Exercises 16, 20, 56
- Chap 5.4 Exercises 42, 44, 46
- Chap 5.6 Exercises 8, 16
- Chap 6.1 Exercises 2, 14, 30

Additional Problems:

A1. Let $r>0$ be constant. In this problem you will evaluate the following integral in two different ways:

$$
\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x
$$

(a) Interpret this integral as the area of a shape you know.
(b) Use the substitution $x=r \sin \theta$ and the trigonometric identities

$$
1-\sin ^{2} \theta=\cos ^{2} \theta \quad \text { and } \quad \cos ^{2} \theta=\frac{1}{2} \cos (2 \theta)+\frac{1}{2}
$$

Then use the substitution $u=2 \theta$.

Solutions:

4.5.2. Evaluate the integral $\int x^{3}\left(2+x^{4}\right)^{5} d x$ using the substitution $u=2+x^{4}$.

Since $u=2+x^{4}$ we have $d u=4 x^{3} d x$ and hence

$$
\begin{aligned}
\int x^{3}\left(2+x^{4}\right)^{5} d x & =\int x^{3}(u)^{5} d x \\
& =\int u^{5} x^{3} d x \\
& =\int u^{5}\left(\frac{d u}{4}\right) \\
& =\frac{1}{4} \int u^{5} d u \\
& =\frac{1}{4} \cdot \frac{1}{6} u^{6}+C \\
& =\frac{1}{24}\left(2+x^{4}\right)^{6}+C
\end{aligned}
$$

where C is an arbitrary constant.
4.5.8. Evaluate the integral $\int x^{2} \cos \left(x^{3}\right) d x$.

We will use the substitution $u=x^{3}$, so that $d u=3 x^{2} d x$. Then we have

$$
\int x^{2} \cos \left(x^{3}\right) d x=\int x^{2} \cos (u) d x
$$

$$
\begin{aligned}
& =\int \cos (u) x^{2} d x \\
& =\int \cos (u)\left(\frac{d u}{3}\right) \\
& =\frac{1}{3} \int \cos (u) d u \\
& =\frac{1}{3} \sin (u)+C \\
& =\frac{1}{3} \sin \left(x^{3}\right)+C,
\end{aligned}
$$

where C is an arbitrary constant.
4.5.14. Evaluate the integral $\int \frac{x}{\left(x^{2}+1\right)^{2}} d x$.

We will use the substitution $u=x^{2}+1$, so that $d u=2 x d x$. Then we have

$$
\begin{aligned}
\int \frac{x}{\left(x^{2}+1\right)^{2}} d x & =\int \frac{x}{u^{2}} d x \\
& =\int \frac{1}{u^{2}} x d x \\
& =\int \frac{1}{u^{2}}\left(\frac{d u}{2}\right) \\
& =\frac{1}{2} \int u^{-2} d u \\
& =\frac{1}{2} \cdot \frac{u^{-1}}{-1}+C \\
& =-\frac{1}{2 u}+C \\
& =-\frac{1}{2\left(x^{2}+1\right)}+C
\end{aligned}
$$

where C is an arbitrary constant.
5.2.16. Differentiate $f(x)=x \ln (x)-x$.

We use the product rule to compute

$$
\begin{aligned}
f^{\prime}(x) & =(x \ln (x)-x)^{\prime} \\
& =(x \ln (x))^{\prime}-1 \\
& =(x)^{\prime} \ln (x)+x(\ln (x))^{\prime}-1 \\
& =\ln (x)+x \cdot \frac{1}{x}-1 \\
& =\ln (x)+1-1 \\
& =\ln (x) .
\end{aligned}
$$

[Remark: Hey, we just discovered by accident that

$$
\int \ln (x) d x=x \ln (x)-x+C \text {. }
$$

That was lucky!]
5.2.20. Differentiate $y=\frac{1}{\ln (x)}$.

First we write $y=(\ln (x))^{-1}$. Then we use the chain rule to get

$$
\frac{d y}{d x}=(-1)(\ln (x))^{-2} \cdot(\ln (x))^{\prime}=-\frac{1}{(\ln (x))^{2}} \cdot \frac{1}{x}=-\frac{1}{x(\ln (x))^{2}} .
$$

5.2.56. Evaluate the integral $\int_{0}^{3} \frac{d x}{5 x+1}$.

We use the substitution $u=5 x+1$, so that $d u=5 d x$. Then we have

$$
\begin{aligned}
\int_{x=0}^{x=3} \frac{d x}{5 x+1} d x & =\int_{x=0}^{x=3} \frac{d x}{u} \\
& =\int_{x=0}^{x=3} \frac{d u / 5}{u} \\
& =\frac{1}{5} \int_{u=1}^{u=16} \frac{1}{u} d u \\
& =\left.\frac{1}{5} \ln |u|\right|_{u=1} ^{u=16} \\
& =\frac{1}{5}(\ln (16)-\ln (1)) \\
& =0.5545
\end{aligned}
$$

5.4.42. Evaluate the integral $\int\left(x^{5}+5^{x}\right) d x$.

Here we just have to remember or look up the rules:

$$
\begin{aligned}
\int\left(x^{5}+5^{x}\right) d x & =\int x^{5} d x+\int 5^{x} d x \\
& =\frac{1}{6} \cdot x^{6}+\frac{1}{\ln (5)} \cdot 5^{x}+C
\end{aligned}
$$

where C is an arbitrary constant.
5.4.44. Evaluate the integral $\int x 2^{x^{2}} d x$.

Here we use the substitution $u=x^{2}$, so that $d u=2 x d x$. Then we have

$$
\begin{aligned}
\int x 2^{x^{2}} d x & =\int x 2^{u} d x \\
& =\int 2^{u} x d x \\
& =\int 2^{u}\left(\frac{d u}{2}\right) \\
& =\frac{1}{2} \int 2^{u} d x \\
& =\frac{1}{2} \cdot \frac{1}{\ln (2)} \cdot 2^{u}+C
\end{aligned}
$$

$$
=\frac{2^{x^{2}}}{2 \ln (2)}+C
$$

where C is an arbitrary constant.
5.4.46. Evaluate the integral $\int \frac{2^{x}}{2^{x}+1} d x$.

Here we use the substitution $u=2^{x}+1$, so that $d u=\ln (2) \cdot 2^{x} d x$. Then we have

$$
\begin{aligned}
\int \frac{2^{x}}{2^{x}+1} d x & =\int \frac{2^{x}}{u} d x \\
& =\int \frac{1}{u} 2^{x} d x \\
& =\int \frac{1}{u}\left(\frac{d u}{\ln (2)}\right) \\
& =\frac{1}{\ln (2)} \int \frac{1}{u} d u \\
& =\frac{1}{\ln (2)} \cdot \ln |u|+C \\
& =\frac{\ln \left|2^{x}+1\right|}{\ln (2)}+C \\
& =\frac{\ln \left(2^{x}+1\right)}{\ln (2)}+C \\
& =\log _{2}\left(2^{x}+1\right)+C
\end{aligned}
$$

where C is an arbitrary constant. [Remark: The last two steps of simplification were not necessary.]
5.6.8. Simplify the expression $\tan \left(\sin ^{-1} x\right)$.

There are two ways to do this problem.
(1) Well, one thing we do know is that $\sin \left(\sin ^{-1} x\right)=x$. [This is the definition of $\sin ^{-1}$.] So we have

$$
\tan \left(\sin ^{-1} x\right)=\frac{\sin \left(\sin ^{-1} x\right)}{\cos \left(\sin ^{-1}(x)\right.}=\frac{x}{\cos \left(\sin ^{-1} x\right)}
$$

Now we have to compute $\cos \left(\sin ^{-1} x\right)$. First we recall that

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

for any θ. Then we substitute $\theta=\sin ^{-1} x$ to get

$$
\begin{aligned}
\cos ^{2}\left(\sin ^{-1}\right)+\sin ^{2}\left(\sin ^{-1} x\right) & =1 \\
\cos ^{2}\left(\sin ^{-1}\right)+x^{2} & =1 \\
\cos ^{2}\left(\sin ^{-1}\right) & =1-x^{2} \\
\cos \left(\sin ^{-1} x\right) & =\sqrt{1-x^{2}} .
\end{aligned}
$$

Finally we have

$$
\tan \left(\sin ^{-1} x\right)=\frac{x}{\cos \left(\sin ^{-1} x\right)}=\frac{x}{\sqrt{1-x^{2}}} .
$$

(2) Let $\theta=\sin ^{-1} x$, so that $x=\sin \theta$. Now let's draw a right angled tringle with angle θ and "hypotenuse" of length 1 . Since $x=\sin \theta$, the length of the "opposite" side must be x. Let? be the length of the "adjacent" side.

The Pythagorean Theorem tells us that

$$
\begin{aligned}
?^{2}+x^{2} & =1^{2} \\
?^{2} & =1-x^{2} \\
? & =\sqrt{1-x^{2}} .
\end{aligned}
$$

Finally, we have

$$
\tan \left(\sin ^{-1}\right)=\tan \theta=\frac{\text { "opposite" }}{\text { "adjacent" }}=\frac{x}{\sqrt{1-x^{2}}} .
$$

5.6.16. Find the derivative of the function $\tan ^{-1}\left(x^{2}\right)$.

First we have to remember the formula

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}
$$

[If we didn't remember the formula then we would have to rediscover it.] Then we use the chain rule to compute

$$
\frac{d}{d x} \tan ^{-1}\left(x^{2}\right)=\frac{1}{1+\left(x^{2}\right)^{2}} \cdot \frac{d}{d x} x^{2}=\frac{2 x}{1+x^{4}}
$$

6.1.2. Evaluate the integral $\int \theta \cos \theta d \theta$ using integration by parts, with $u=\theta$ and $d v=$ $\cos \theta d \theta$.

Since $u=\theta$ we have $d u=d \theta$, and since $d v=\cos \theta d \theta$ we have $v=\sin \theta$. Then integration by parts gives

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int \theta \cos \theta d \theta & =\theta \sin \theta-\int \sin \theta d \theta \\
& =\theta \sin \theta-(-\cos \theta)+C \\
& =\theta \sin \theta+\cos \theta+C
\end{aligned}
$$

where C is an arbitrary constant.
6.1.14. Evaluate the integral $\int e^{-\theta} \cos (2 \theta) d \theta$.

We will use integration by parts with $f(\theta)=\cos (2 \theta)$ and $g^{\prime}(\theta)=e^{-\theta}$, so that $f^{\prime}(\theta)=$ $-2 \sin (2 \theta)$ and $g(\theta)=-e^{-\theta}$. Then we have

$$
\int f(\theta) g^{\prime}(\theta) d \theta=f(\theta) g(\theta)-\int f^{\prime}(\theta) g(\theta) d \theta
$$

$$
\begin{aligned}
\int e^{-\theta} \cos (2 \theta) d \theta & =-e^{-\theta} \cos (2 \theta)-\int 2 e^{-\theta} \sin (2 \theta) d \theta \\
& =-e^{-\theta} \cos (2 \theta)-2 \int e^{-\theta} \sin (2 \theta) d \theta
\end{aligned}
$$

Did that help? Now we have to evaluate the integral $\int e^{-\theta} \sin (2 \theta) d \theta$. Okay, let's do it! Let $F(\theta)=\sin (2 \theta)$ and $G^{\prime}(\theta)=e^{-\theta}$, so that $F^{\prime}(\theta)=2 \cos (2 \theta)$ and $G(\theta)=-e^{-\theta}$ Then we have

$$
\begin{aligned}
\int F(\theta) G^{\prime}(\theta) d \theta & =F(\theta) G(\theta)-\int F^{\prime}(\theta) G(\theta) d \theta \\
\int e^{-\theta} \sin (2 \theta) d \theta & =-e^{-\theta} \sin (2 \theta)-\int 2\left(-e^{-\theta}\right) \cos (2 \theta) d \theta \\
& =-e^{-\theta} \sin (2 \theta)+2 \int e^{-\theta} \cos (2 \theta) d \theta
\end{aligned}
$$

Now we're back to where we started. But that's a good thing! Define

$$
A:=\int e^{-\theta} \cos (2 \theta) d \theta
$$

Putting our two equations together gives

$$
\begin{aligned}
A & =-e^{-\theta} \cos (2 \theta)-2 \int e^{-\theta} \sin (2 \theta) d \theta \\
A & =-e^{-\theta} \cos (2 \theta)-2\left(-e^{-\theta} \sin (2 \theta)+2 A\right) \\
A & =-e^{-\theta} \cos (2 \theta)+2 e^{-\theta} \sin (2 \theta)-4 A \\
5 A & =e^{-\theta}(2 \sin (2 \theta)-\cos (2 \theta)) \\
A & =\frac{1}{5} e^{-\theta}(2 \sin (2 \theta)-\cos (2 \theta))
\end{aligned}
$$

We conclude that

$$
\int e^{-\theta} \cos (2 \theta) d \theta=\frac{1}{5} e^{-\theta}(2 \sin (2 \theta)-\cos (2 \theta))+C
$$

where C is an arbitrary constant.
[Remark: Good thing we didn't lose our confidence when the first integration by parts didn't work.]
6.1.30. First make a substitution and then use integration by parts to evaluate $\int_{1}^{4} e^{\sqrt{x}} d x$.

First we let $u=\sqrt{x}$, so that $d u=\frac{1}{2 \sqrt{x}} d x$. Then we have

$$
\begin{aligned}
\int_{x=1}^{x=4} e^{\sqrt{x}} d x & =\int_{x=1}^{x=4} e^{u} 2 \sqrt{x} d u \\
& =\int_{u=1}^{u=2} 2 u e^{u} d u
\end{aligned}
$$

Okay. Now we let $f(u)=2 u$ and $g^{\prime}(u)=e^{u}$, so that $f^{\prime}(u)=2$ and $g(u)=e^{u}$. Then we have

$$
\begin{aligned}
\int_{u=1}^{u=2} f(u) g^{\prime}(u) & =\left.f(u) g(u)\right|_{u=1} ^{u=2}-\int_{u=1}^{u=2} f^{\prime}(u) g(u) d u \\
\int_{1}^{2} 2 u e^{u} d u & =\left.2 u e^{u}\right|_{1} ^{2}-\int_{1}^{2} 2 e^{u} d u \\
& =\left(2(2) e^{2}-2(1) e^{1}\right)-2\left(e^{2}-e^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =4 e^{2}-2 e-2 e^{2}+2 e \\
& =2 e^{2}
\end{aligned}
$$

And that's the answer.
A1. Compute the integral $\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x$ in two ways.
(a) First we notice that this is just the area of a semicircle of radius r :

Hence $\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x=\frac{\pi r^{2}}{2}$.
(b) Second, we will follow the hints to evaluate the integral by hand. Let $x=r \sin \theta$, so that $d x=r \cos \theta d \theta$. Then we have

$$
\begin{aligned}
\int \sqrt{r^{2}-x^{2}} d x & =\int \sqrt{r^{2}-r^{2} \sin ^{2} \theta} d x \\
& =\int \sqrt{r^{2}\left(1-\sin ^{2} \theta\right)} d x \\
& =\int \sqrt{r^{2} \cos ^{2} \theta} d x \\
& =\int r \cos \theta d x \\
& =\int r \cos \theta(r \cos \theta d \theta) \\
& =r^{2} \int \cos ^{2} \theta d \theta \\
& =r^{2} \int\left(\frac{1}{2} \cos (2 \theta)+\frac{1}{2}\right) d \theta \\
& =\frac{r^{2}}{2} \int(\cos (2 \theta)+1) d \theta
\end{aligned}
$$

Then we make the substitution $u=2 \theta$, so that $d u=2 d \theta$, to get

$$
\begin{aligned}
\frac{r^{2}}{2} \int(\cos (2 \theta)+1) d \theta & =\frac{r^{2}}{2} \int(\cos (u)+1) d \theta \\
& =\frac{r^{2}}{2} \cdot \frac{1}{2} \int(\cos (u)+1) d u \\
& =\frac{r^{2}}{4}(\sin (u)+u)+C,
\end{aligned}
$$

where C is an arbitrary constant. Finally, since $x=r \sin \theta$ we note that x goes from $-r$ to r as θ goes from $-\pi / 2$ to $\pi / 2$; and since $u=2 \theta$ we note that θ goes from $-\pi / 2$
to $\pi / 2$ as u goes from $-\pi$ to π. We conclude that

$$
\begin{aligned}
\int_{x=-r}^{x=r} \sqrt{r^{2}-x^{2}} d x & =\frac{r^{2}}{2} \int_{\theta=-\pi / 2}^{\theta=\pi / 2}(\cos (2 \theta)+1) d \theta \\
& =\frac{r^{2}}{4} \int_{u=-\pi}^{u=\pi}(\cos (u)+1) d u \\
& =\left.\frac{r^{2}}{4}(\sin (u)+u)\right|_{u=-\pi} ^{u=\pi} \\
& =\frac{r^{2}}{4}[(\sin (\pi)+\pi)-(\sin (-\pi)+(-\pi))] \\
& =\frac{r^{2}}{4}[(0+\pi)-(0-\pi)] \\
& =\frac{r^{2}}{4}[2 \pi] \\
& =\frac{\pi r^{2}}{2} .
\end{aligned}
$$

Which method do you prefer?
[Remark: That was the final homework problem of the course. Now we have come full circle. On HW1 Problem 1 we discussed Archimedes' proof that the area of a circle is πr^{2}. Here we used the methods of Calculus to come up with a completely different proof. Calculus can be used to solve a wide array of problems. And once you have some practice, it doesn't really require that much effort. We can all be Archimedes now.]

