## Book Problems:

- Chap 4.5 Exercises 2, 8, 14
- Chap 5.2 Exercises 16, 20, 56
- Chap 5.4 Exercises 42, 44, 46
- Chap 5.6 Exercises 8, 16
- Chap 6.1 Exercises 2, 14, 30


## Additional Problems:

A1. Let $r>0$ be constant. In this problem you will evaluate the following integral in two different ways:

$$
\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x
$$

(a) Interpret this integral as the area of a shape you know.
(b) Use the substitution $x=r \sin \theta$ and the trigonometric identities

$$
1-\sin ^{2} \theta=\cos ^{2} \theta \quad \text { and } \quad \cos ^{2} \theta=\frac{1}{2} \cos (2 \theta)+\frac{1}{2}
$$

Then use the substitution $u=2 \theta$.

