Book Problems:

- Chap 3.7 Exercises 2, 4, 14
- Chap 4.1 Exercises 6
- Chap 4.2 Exercises 30, 38, 42
- Chap 4.3 Exercises 2, 6, 10, 14
- Chap 4.4 Exercises 6, 10

Solutions:

3.7.2. Find the most general antiderivative of $f(x)=8 x^{9}-3 x^{6}+12 x^{3}$.

Recall that $\int x^{p} d x=\frac{1}{p+1} x^{p+1}$ for all $p \neq-1$. Thus we have

$$
\begin{aligned}
\int f(x) d x & =\int\left(8 x^{9}-3 x^{6}+12 x^{3}\right) d x \\
& =8 \int x^{9} d x-3 \int x^{6} d x+12 \int x^{3} d x \\
& =8 \frac{1}{10} x^{10}-3 \frac{1}{7} x^{7}+12 \frac{1}{4} x^{4}+C
\end{aligned}
$$

where C is an arbitrary constant.
3.7.4. Find the most general antiderivative of $f(x)=\sqrt[3]{x^{2}}+x \sqrt{x}$.

First we write $f(x)=\left(x^{2}\right)^{1 / 3}+x^{1} \cdot x^{1 / 2}=x^{2 / 3}+x^{3 / 2}$. Then we have

$$
\begin{aligned}
\int f(x) d x & =\int\left(x^{2 / 3}+x^{3 / 2}\right) d x \\
& =\int x^{2 / 3} d x+\int x^{3 / 2} d x \\
& =\frac{1}{5 / 3} x^{5 / 3}+\frac{1}{5 / 2} x^{5 / 2}+C \\
& =\frac{3}{5} x^{5 / 3}+\frac{2}{5} x^{5 / 2}+C
\end{aligned}
$$

where C is an arbitrary constant.
3.7.14. Find the most general antiderivative of $f(\theta)=6 \theta^{2}-7 \sec ^{2} \theta$.

First recall that $\frac{d}{d \theta} \tan \theta=\sec ^{2} \theta$. Thus we have

$$
\begin{aligned}
\int f(\theta) d \theta & =\int\left(6 \theta^{2}-7 \sec ^{2} \theta\right) d \theta \\
& =6 \int \theta^{2} d \theta-7 \int \sec ^{2} \theta d \theta \\
& =6 \frac{1}{3} \theta^{3}-7 \tan \theta+C
\end{aligned}
$$

where C is an arbitrary constant.
4.1.6. Graph the function $f(x)=1 /\left(1+x^{2}\right)$ for $-2 \leq x \leq 2$. Estimate the area under the graph by using four rectangles with left endoints, right entpoints, and midpoints. Then do the same with eight rectangles.

Here's the graph of $f(x)$ from $x=-2$ to $x=2$:

To approximate the area with four rectangles we let $n=4$ so that $\Delta x=(2-(-2)) / 4=1$ and $x_{i}=-2+i \cdot \Delta x=-2+i$. The approximations using right hand endpoints, left hand endpoints, and midpoints are

$$
\begin{aligned}
R_{4} & =\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x=f(-1)+f(0)+f(1)+f(2)=2.2 \\
L_{4} & =\sum_{i=1}^{n} f\left(x_{i-1}\right) \cdot \Delta x=f(-2)+f(-1)+f(0)+f(1)=2.2 \\
M_{4} & =\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \cdot \Delta x=f(-1.5)+f(-0.5)+f(0.5)+f(1.5)=2.215
\end{aligned}
$$

Here are the pictures:

To approximate the area with eight rectangles we let $n=8$ so that $\Delta x=(2-(-2)) / 8=1 / 2$ and $x_{i}=-2+i \cdot \Delta x=-2+i / 2$. The approximations using right hand endpoints, left hand endpoints, and midpoints are

$$
\begin{aligned}
R_{8} & =\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x \\
& =f(-3 / 2) \frac{1}{2}+f(-1) \frac{1}{2}+f(-1 / 2) \frac{1}{2}+f(0) \frac{1}{2}+f(1 / 2) \frac{1}{2}+f(1) \frac{1}{2}+f(3 / 2) \frac{1}{2}+f(2) \frac{1}{2} \\
& =2.208 \\
L_{8} & =\sum_{i=1}^{n} f\left(x_{i-1}\right) \cdot \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& =f(-2) \frac{1}{2}+f(-3 / 2) \frac{1}{2}+f(-1) \frac{1}{2}+f(-1 / 2) \frac{1}{2}+f(0) \frac{1}{2}+f(1 / 2) \frac{1}{2}+f(1) \frac{1}{2}+f(3 / 2) \frac{1}{2} \\
& =2.208 \\
M_{8} & =\sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \cdot \Delta x \\
& =f(-7 / 4) \frac{1}{2}+f(-5 / 4) \frac{1}{2}+f(-3 / 4) \frac{1}{2}+f(-1 / 4) \frac{1}{2}+f(1 / 4) \frac{1}{2}+f(3 / 4) \frac{1}{2}+f(5 / 4) \frac{1}{2}+f(7 / 4) \frac{1}{2} \\
& =2.218
\end{aligned}
$$

And here are the pictures:

We weren't asked for it, but to compute the exact area under the graph we let n be arbitrary so that $\Delta x=(2-(-2)) / n=4 / n$ and $x_{i}=-2+i \cdot \Delta x=-2+4 i / n$. Then the area under the graph is defined as

$$
\int_{-2}^{2} \frac{1}{1+x^{2}} d x=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{1}{1+(4 i / n)^{2}} \cdot \frac{4}{n}\right]=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{4 n}{n^{2}+16 i^{2}}\right] .
$$

We have no idea how to compute this limit so it doesn't help. However, we will see next week that the antiderivative of $1 /\left(1+x^{2}\right)$ is $\arctan (x)$, and then we can use the Fundamental Theorem of Calculus to compute

$$
\int_{-2}^{2} \frac{1}{1+x^{2}} d x=\arctan (2)-\arctan (-2)=2.214
$$

Stay tuned.
4.2.30. The black line in the picture below is the graph of $g(x)$. Compute the integrals $\int_{0}^{2} g(x) d x, \int_{2}^{6} g(x) d x$, and $\int_{0}^{7} g(x) d x$.

- $\int_{0}^{2} g(x) d x$ is the area of the pink triangle on the left, so

$$
\int_{0}^{2} g(x) d x=\frac{2 \cdot 4}{2}=4
$$

- $\int_{2}^{6} g(x) d x$ is the negative of the area of the blue semicircle, so

$$
\int_{2}^{6} g(x) d x=-\frac{\pi \cdot 2^{2}}{2}=-6.28
$$

- $\int_{0}^{7} g(x) d x$ is the sum of the areas of the two pink triangles, minus the area of the blue semicircle, so

$$
\int_{0}^{7} g(x) d x=\frac{2 \cdot 4}{2}+\frac{1 \cdot 1}{2}-\frac{\pi \cdot 2^{2}}{2}=4+\frac{1}{2}-6.28=-1.78
$$

4.2.38. Given that $\int_{0}^{1} 3 x \sqrt{x^{2}+4} d x=5 \sqrt{5}-8$, what is $\int_{1}^{0} 3 u \sqrt{u^{2}+4} d u$?

This is pretty much a trick question. Your eyes may get confused by all the symbols, but there's really nothing to it. First we switch the limits of integration (which multiplies the result by -1) and then we rename the "dummy variable" from u to x (which doesn't do anything) to get

$$
\begin{aligned}
\int_{1}^{0} 3 u \sqrt{u^{2}+4} d u & =-\int_{0}^{1} 3 u \sqrt{u^{2}+4} d u \\
& =-\int_{0}^{1} 3 x \sqrt{x^{2}+4} d x \\
& =-(5 \sqrt{5}-8)
\end{aligned}
$$

4.2.42. Find $\int_{0}^{5} f(x) d x$ if $f(x)=\left\{\begin{array}{ll}3 & \text { for } x<3 \\ x & \text { for } x \geq 3\end{array}\right.$.

There are two ways to do this problem. The first way is to draw the graph. Here it is:

Note that the area below the graph from $x=0$ to $x=5$ breaks into a rectangle of width 5 and height 3 , and a triangle of width 2 and height 2 . Therefore,

$$
\int_{0}^{5} f(x) d x=5 \cdot 3+\frac{2 \cdot 2}{2}=15+2=17 .
$$

The other way to do it is to use the Fundamental Theorem of Calculus. To do this we first break up the interval at $x=3$. From $x=0$ to $x=3$ we have $f(x)=3$ and from $x=3$ to $x=5$ we have $f(x)=x$. Hence

$$
\begin{aligned}
\int_{0}^{5} f(x) d x & =\int_{0}^{3} f(x) d x+\int_{3}^{5} f(x) d x \\
& =\int_{0}^{3} 3 d x+\int_{3}^{5} x d x \\
& =[3 x]_{x=0}^{x=3}+\left[\frac{x^{2}}{2}\right]_{x=3}^{x=5} \\
& =[3(3)-3(0)]+\left[\frac{5^{2}}{2}-\frac{3^{2}}{2}\right] \\
& =9+8 \\
& =17 .
\end{aligned}
$$

This calculation divided up the pink region into a 3 by 3 square (with area 9) from $x=0$ to $x=3$ and a trapezoid (with area 8) from $x=3$ to $x=5$.

Of course, both methods give the same anwer. Which method do you prefer?
4.3.2. Evaluate $\int_{1}^{2}\left(4 x^{3}-3 x^{2}+2 x\right) d x$.

Let $f(x)=4 x^{3}-3 x^{2}+2 x$. One particular antiderivative of this is

$$
F(x)=4 \frac{1}{4} x^{4}-3 \frac{1}{3} x^{3}+2 \frac{1}{2} x^{2}=x^{4}-x^{3}+x^{2} .
$$

Then the F.T.C. gives

$$
\begin{aligned}
\int_{1}^{2}\left(4 x^{3}-3 x^{2}+2 x\right) d x & =\int_{1}^{2} f(x) d x \\
& =F(2)-F(1) \\
& =\left(2^{4}-2^{3}+2^{2}\right)-\left(1^{4}-1^{3}+1^{2}\right) \\
& =(16-8+4)-(1-1+1) \\
& =12-1 \\
& =11
\end{aligned}
$$

4.3.6. Evaluate $\int_{-1}^{1} t(1-t)^{2} d t$.

Let $f(t)=t(1-t)^{2}$ and expand to get $f(t)=t\left(1-2 t+t^{2}\right)=t-2 t^{2}+t^{3}$. One particular antiderivative of this is

$$
F(t)=\frac{1}{2} t^{2}-2 \frac{1}{3} t^{3}+\frac{1}{4} t^{4}
$$

Then the F.T.C. gives

$$
\begin{aligned}
\int_{-1}^{1} t(1-t)^{2} d t & =\int_{-1}^{1} f(t) d t \\
& =F(1)-F(-1)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{2} 1^{2}-\frac{2}{3} 1^{3}+\frac{1}{4} 1^{4}\right)-\left(\frac{1}{2}(-1)^{2}-\frac{2}{3}(-1)^{3}+\frac{1}{4}(-1)^{4}\right) \\
& =\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{1}{4}\right) \\
& =\frac{1}{12}-\frac{17}{12} \\
& =-\frac{16}{12} \\
& =-\frac{4}{3}
\end{aligned}
$$

4.3.10. Evaluate $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x$.

Let $f(x)=\left(x+\frac{1}{x}\right)^{2}$ and expand to get $f(x)=x^{2}+2+x^{-2}$. One particular antiderivative of this is

$$
F(x)=\frac{1}{3} x^{3}+2 x+\frac{1}{-1} x^{-1} .
$$

Then the F.T.C. gives

$$
\begin{aligned}
\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x & =\int_{1}^{2} f(x) d x \\
& =F(2)-F(1) \\
& =\left(\frac{2^{3}}{3}+2(2)-(2)^{-1}\right)-\left(\frac{1}{3}+2-1\right) \\
& =\frac{37}{6}-\frac{4}{3} \\
& =\frac{29}{6} .
\end{aligned}
$$

4.3.14. Evaluate $\int_{1}^{9} \frac{3 x-2}{\sqrt{x}} d x$.

Let $f(x)=\frac{3 x-2}{\sqrt{x}}$. We can rewrite this as $f(x)=\frac{3 x}{\sqrt{x}}-\frac{2}{\sqrt{x}}=3 x^{1 / 2}-2 x^{-1 / 2}$. One particular antiderivative of this is

$$
F(x)=3 \frac{1}{3 / 2} x^{3 / 2}-2 \frac{1}{1 / 2} x^{1 / 2}=3 \frac{2}{3} x^{3 / 2}-2 \frac{2}{1} x^{1 / 2}=2 x^{3 / 2}-4 x^{1 / 2} .
$$

Then the F.T.C. gives

$$
\begin{aligned}
\int_{1}^{9} \frac{3 x-2}{\sqrt{x}} d x & =\int_{1}^{9} f(x) d x \\
& =F(9)-F(1) \\
& =\left(2(9)^{3 / 2}-4(9)^{1 / 2}\right)-\left(2(1)^{3 / 2}-4(1)^{1 / 2}\right) \\
& =(2 \cdot 27-4 \cdot 3)-(2-4) \\
& =42-(-2) \\
& =44 .
\end{aligned}
$$

4.4.6. Use Part 1 of the R.T.C. to find the derivative of $g(x)=\int_{1}^{x}\left(2+t^{4}\right)^{5} d t$.

This is one of those trick questions that looks way harder than it is. If we let $f(x)=\left(2+x^{4}\right)^{5}$ then $g(x)=\int_{1}^{x} f(t) d t$ and Part 1 of the F.T.C. says

$$
g^{\prime}(x)=\frac{d}{d x} \int_{1}^{x} f(t) d t=f(x)=\left(2+x^{4}\right)^{5} .
$$

There's nothing else to say.
4.4.10. Use Part 1 of the F.T.C. to find the derivative of $h(x)=\int_{0}^{x^{2}} \sqrt{1+r^{3}} d r$.

This one is slightly tricker, but it's still way easier than it looks. Let $f(x)=\sqrt{1+x^{3}}$ so that $h(x)=\int_{0}^{x^{2}} f(r) d r$. Now before we apply Part 1 of the F.T.C. we have to do something about the x^{2}. We can take care of it by making the substitution $u=x^{2}$ to get $h(x)=\int_{0}^{u} f(r) d r$. Then Part 1 of the F.T.C. says

$$
\frac{d h}{d u}=\frac{d}{d u} \int_{0}^{u} f(r) d r=f(u)=\sqrt{1+u^{3}}=\sqrt{1+x^{6}}
$$

But that's not exactly what was asked for. We want $h^{\prime}(x)=d h / d x$. For this we use the Chain Rule to get

$$
\frac{d h}{d x}=\frac{d h}{d u} \cdot \frac{d u}{d x}=\sqrt{1+x^{6}} \cdot(2 x) .
$$

[Remark: Problems like 4.4.6 and 4.4.10 are deliberately trying to confuse you. This is very valuable for the learning process, so I think they're good homework problems. However, I will never ask a problem like this on an exam because exams are not for learning.]

