Book Problems:

- Chap 2.1 Exercises 4, 14, 18
- Chap 2.2 Exercises 4, 6, 7
- Chap 2.3 Exercises 2, 4, 8, 16, 20

Additional Problems:

A1. Recall that the number e is defined by the limit

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

In class we interpreted this as the amount of money you will have after one year if you invest $\$ 1$ in a bank account with 100% yearly rate of return. Using the same reasoning we can interpret the limit

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=?
$$

as the amount you will have after one year if you invest $\$ 1$ in a bank account with yearly rate of return $r>0$. (The rate $r=1$ corresponds to 100%.) Use the substitution method to evaluate this limit. [Hint: Let $n=m r$ and note that $n \rightarrow \infty$ as $m \rightarrow \infty$.]

Solutions:

2.1.4. To find the equation of the tangent line to the curve $y=x^{3}-3 x+1$ at the point $(2,3)$ we first compute its slope. I'll do it the long way because we didn't learn the tricks yet in Chapter 2.1. By definition we have

$$
\begin{aligned}
\frac{d y}{d x}(2) & =\lim _{h \rightarrow 0} \frac{\left((2+h)^{3}-3(2+h)+1\right)-\left(2^{3}-3(2)+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not \boxed{1}+12 h+6 h^{2}+h^{3}-\not \emptyset-3 h+\not \not-\not p}{h} \\
& =\lim _{h \rightarrow 0} \frac{9 h+6 h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not h\left(9+6 h+h^{2}\right)}{\not h} \\
& =9 .
\end{aligned}
$$

The tangent line has slope 9 and passes through the point $(2,3)$ so it has equation

$$
\begin{aligned}
(y-3) /(x-2) & =9 \\
y-3 & =9(x-2) \\
y & =9(x-2)+3 \\
y & =9 x-15 .
\end{aligned}
$$

2.1.14. Let $s(t)=t^{2}-8 t+18$ be the position of a particle at time t.
(a) The average velocity of the particle over time interval $\left[t_{1}, t_{2}\right]$ is $\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$.
(i) The average velocity of the particle over time interval $[3,4]$ is $\frac{s(4)-s(3)}{1}=-1$.
(ii) The average velocity of the particle over time interval $[3.5,4]$ is $\frac{s(4)-s(3.5)}{0.5}=-0.5$.
(iii) The average velocity of the particle over time interval $[4,5]$ is $\frac{s(5)-s(4)}{1}=1$.
(iv) The average velocity of the particle over time interval $[4,4.5]$ is $\frac{s(4.5)-s(4)}{1}=0.5$.
(b) The instantaneous velocity of the particle at time t is

$$
\begin{aligned}
s^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((t+h)^{2}-8(t+h)+18\right)-\left(t^{2}-8 t+18\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}+2 t h+h^{2}-8 t-8 h+18-\not t^{2}+8 t-18}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 t h+h^{2}-8 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\nvdash(2 t+h-8)}{h} \\
& =\lim _{h \rightarrow 0} 2 t+h-8 \\
& =2 t-8 .
\end{aligned}
$$

Therefore the instantaneous velocity of the particle at $t=4$ is $s^{\prime}(4)=2 \cdot 4-8=0$.
(c) Here is a picture of the graph of $s(t)$ (in black) showing the secant lines (in red) and the tangent line (in blue) whose slopes we computed in (a) and (b).

2.1.18. If the tangent line to $y=f(x)$ at $(4,3)$ passes through the point $(0,2)$, find $f(4)$ and $f^{\prime}(4)$.

Well, since the point $(4,3)$ is assumed to be on the graph, we must have $(4,3)=(4, f(4))$. Hence $f(4)=3$. Next, we know that the tangent line at $x=4$ contains the points $(4,3)$ and $(0,2)$ so it must have slope $(3-2) /(4-0)=1 / 4$. But by definition the slope of the tangent line at $x=4$ is $f^{\prime}(4)$. Hence $f^{\prime}(4)=1 / 4$.
2.2.4. Here is the graph of f (in blue) and the graph of f^{\prime} (in red).

2.2.6. Here is the graph of f (in blue) and the graph of f^{\prime} (in red).

2.2.7. Here is the graph of f (in blue) and the graph of f^{\prime} (in red).

2.3.2. Let $f(x)=\pi^{2}$. Then since π^{2} is just a constant we have

$$
f^{\prime}(x)=0 .
$$

2.3.4. Let $F(x)=\frac{3}{4} x^{8}$. Using the "power rule" and "constant multiple rule" gives

$$
F^{\prime}(x)=\left(\frac{3}{4} x^{8}\right)^{\prime}=\frac{3}{4}\left(x^{8}\right)^{\prime}=\frac{3}{4} \cdot 8 x^{7}=6 x^{7}
$$

2.4.8. Let $y=\sin t+\pi \cos t$. Then using some rules gives

$$
\frac{d y}{d t}=\frac{d}{d t}(\sin t+\pi \cos t)=\frac{d}{d t}(\sin t)+\pi \frac{d}{d t}(\cos t)=\cos t-\pi \sin t .
$$

2.4.16. Let $y=\sqrt{x}(x-1)$. Before differentiating, let's expand the expression to get

$$
y=x^{1 / 2}(x-1)=x^{1 / 2} \cdot x-x^{1 / 2}=x^{3 / 2}-x^{1 / 2} .
$$

Now we can differentiate using the power rule to get

$$
\frac{d y}{d x}=\frac{3}{2} \cdot x^{3 / 2-1}-\frac{1}{2} \cdot x^{1 / 2-1}=\frac{3}{2} \cdot x^{1 / 2}-\frac{1}{2} \cdot x^{-1 / 2} .
$$

2.4.20. Let $g(u)=\sqrt{2} u+\sqrt{3 u}$. First we expand the expression:

$$
g(u)=\sqrt{2} u^{1}+\sqrt{3} \sqrt{u}=\sqrt{2} u^{1}+\sqrt{3} u^{1 / 2}
$$

Then we use the power rule:

$$
g^{\prime}(u)=\sqrt{2} \cdot 1 u^{0}+\sqrt{3} \cdot \frac{1}{2} u^{-1 / 2}=\sqrt{2}+\frac{\sqrt{3}}{2 \sqrt{u}} .
$$

A1. We know that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=e \approx 2.718$. Let $r>0$ be a positive constant. We want to compute the limit

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}
$$

To do this we will make the substitution $n=r m$. Since r is positive this means that $m \rightarrow \infty$ as $n \rightarrow \infty$. Then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n} & =\lim _{m \rightarrow \infty}\left(1+\frac{r}{r m}\right)^{r m} \\
& =\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m r} \\
& =\lim _{m \rightarrow \infty}\left[\left(1+\frac{1}{m}\right)^{m}\right]^{r} \\
& =\left[\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}\right]^{r} \\
& =e^{r}
\end{aligned}
$$

In summary, if you put $\$ 1$ in a bank account with yearly rate of return r then at the end of the year you will have $\$ e^{r}$. For example, suppose the yearly rate of return is 3.6%, which corresponds to $r=0.036$. Then at the end of the year you will have

$$
\$ e^{0.036}=\$ 1.036655846
$$

That's (very) slightly more than the $\$ 1.036$ you would get without using compound interest. You'll notice a bigger difference if you (1) deposit more money, (2) have a larger rate of return, or (3) wait longer. In general, if you deposit $\$ P$ at yearly rate of return r and you wait t years, then you will get

$$
\$ P e^{r t}
$$

