Book Problems:

- Chap 2.1 Exercises 4, 14, 18
- Chap 2.2 Exercises 4, 6, 7
- Chap 2.3 Exercises 2, 4, 8, 16, 20

Additional Problems:

A1. Recall that the number e is defined by the limit

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

In class we interpreted this as the amount of money you will have after one year if you invest \$1 in a bank account with 100% yearly rate of return. Using the same reasoning we can interpret the limit

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = ?$$

as the amount you will have after one year if you invest \$1 in a bank account with yearly rate of return r > 0. (The rate r = 1 corresponds to 100%.) Use the **substitution method** to evaluate this limit. [Hint: Let n = mr and note that $n \to \infty$ as $m \to \infty$.]

Solutions:

2.1.4. To find the equation of the tangent line to the curve $y = x^3 - 3x + 1$ at the point (2,3) we first compute its slope. I'll do it the long way because we didn't learn the tricks yet in Chapter 2.1. By definition we have

$$\begin{aligned} \frac{dy}{dx}(2) &= \lim_{h \to 0} \frac{\left((2+h)^3 - 3(2+h) + 1\right) - \left(2^3 - 3(2) + 1\right)}{h} \\ &= \lim_{h \to 0} \frac{\cancel{\$} + 12h + 6h^2 + h^3 - \cancel{\$} - \cancel{\$} - \cancel{\$} + \cancel{1} - \cancel{\$}}{h} \\ &= \lim_{h \to 0} \frac{\cancel{\$} + 6h^2 + h^3}{h} \\ &= \lim_{h \to 0} \frac{\cancel{\$} (9 + 6h + h^2)}{\cancel{\$}} \\ &= 9. \end{aligned}$$

The tangent line has slope 9 and passes through the point (2,3) so it has equation

$$(y-3)/(x-2) = 9$$

 $y-3 = 9(x-2)$
 $y = 9(x-2) + 3$
 $y = 9x - 15.$

2.1.14. Let $s(t) = t^2 - 8t + 18$ be the position of a particle at time t.

- (a) The average velocity of the particle over time interval [t₁, t₂] is \$\frac{s(t_2)-s(t_1)}{t_2-t_1}\$.
 (i) The average velocity of the particle over time interval [3,4] is \$\frac{s(4)-s(3)}{1}\$ = -1\$.
 - (ii) The average velocity of the particle over time interval [3.5, 4] is $\frac{s(4)-s(3.5)}{0.5} = -0.5$.
 - (iii) The average velocity of the particle over time interval [4,5] is $\frac{s(5)-s(4)}{1} = 1$.
 - (iv) The average velocity of the particle over time interval [4, 4.5] is $\frac{s(4.5)-s(4)}{1} = 0.5$.
- (b) The instantaneous velocity of the particle at time t is

- \

$$s'(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h}$$

=
$$\lim_{h \to 0} \frac{((t+h)^2 - 8(t+h) + 18) - (t^2 - 8t + 18)}{h}$$

=
$$\lim_{h \to 0} \frac{t^2 + 2th + h^2 - \mathscr{K} - 8h + \mathscr{K} - t^2 + \mathscr{K} - \mathscr{K}}{h}$$

=
$$\lim_{h \to 0} \frac{2th + h^2 - 8h}{h}$$

=
$$\lim_{h \to 0} \frac{\mathscr{K}(2t+h-8)}{\mathscr{K}}$$

=
$$\lim_{h \to 0} 2t + h - 8$$

=
$$2t - 8.$$

Therefore the instantaneous velocity of the particle at t = 4 is $s'(4) = 2 \cdot 4 - 8 = 0$.

(c) Here is a picture of the graph of s(t) (in black) showing the secant lines (in red) and the tangent line (in blue) whose slopes we computed in (a) and (b).

2.1.18. If the tangent line to y = f(x) at (4,3) passes through the point (0,2), find f(4) and f'(4).

Well, since the point (4,3) is assumed to be on the graph, we must have (4,3) = (4, f(4)). Hence f(4) = 3. Next, we know that the tangent line at x = 4 contains the points (4,3) and (0,2) so it must have slope (3-2)/(4-0) = 1/4. But by definition the slope of the tangent line at x = 4 is f'(4). Hence f'(4) = 1/4.

2.2.4. Here is the graph of f (in blue) and the graph of f' (in red).

2.2.6. Here is the graph of f (in blue) and the graph of f' (in red).

2.2.7. Here is the graph of f (in blue) and the graph of f' (in red).

2.3.2. Let $f(x) = \pi^2$. Then since π^2 is just a constant we have f'(x) = 0.

2.3.4. Let $F(x) = \frac{3}{4}x^8$. Using the "power rule" and "constant multiple rule" gives

$$F'(x) = \left(\frac{3}{4}x^8\right)' = \frac{3}{4}\left(x^8\right)' = \frac{3}{4} \cdot 8x^7 = 6x^7.$$

2.4.8. Let $y = \sin t + \pi \cos t$. Then using some rules gives

$$\frac{dy}{dt} = \frac{d}{dt}\left(\sin t + \pi\cos t\right) = \frac{d}{dt}(\sin t) + \pi\frac{d}{dt}(\cos t) = \cos t - \pi\sin t.$$

2.4.16. Let $y = \sqrt{x}(x-1)$. Before differentiating, let's expand the expression to get $y = x^{1/2}(x-1) = x^{1/2} \cdot x - x^{1/2} = x^{3/2} - x^{1/2}.$

Now we can differentiate using the power rule to get

$$\frac{dy}{dx} = \frac{3}{2} \cdot x^{3/2-1} - \frac{1}{2} \cdot x^{1/2-1} = \frac{3}{2} \cdot x^{1/2} - \frac{1}{2} \cdot x^{-1/2}.$$

2.4.20. Let $g(u) = \sqrt{2}u + \sqrt{3u}$. First we expand the expression:

$$g(u) = \sqrt{2} u^1 + \sqrt{3} \sqrt{u} = \sqrt{2} u^1 + \sqrt{3} u^{1/2}$$

Then we use the power rule:

$$g'(u) = \sqrt{2} \cdot 1u^0 + \sqrt{3} \cdot \frac{1}{2}u^{-1/2} = \sqrt{2} + \frac{\sqrt{3}}{2\sqrt{u}}.$$

A1. We know that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right) = e \approx 2.718$. Let r > 0 be a positive constant. We want to compute the limit

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n.$$

To do this we will make the **substitution** n = rm. Since r is positive this means that $m \to \infty$ as $n \to \infty$. Then we have

$$\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = \lim_{m \to \infty} \left(1 + \frac{r}{rm} \right)^{rm}$$
$$= \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^{mr}$$
$$= \lim_{m \to \infty} \left[\left(1 + \frac{1}{m} \right)^m \right]^r$$
$$= \left[\lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \right]^r$$
$$= e^r.$$

In summary, if you put \$1 in a bank account with yearly rate of return r then at the end of the year you will have e^r . For example, suppose the yearly rate of return is 3.6%, which corresponds to r = 0.036. Then at the end of the year you will have

$$e^{0.036} = 1.036655846$$
.

That's (very) slightly more than the \$1.036 you would get without using compound interest. You'll notice a bigger difference if you (1) deposit more money, (2) have a larger rate of return, or (3) wait longer. In general, if you deposit \$P at yearly rate of return r and you wait t years, then you will get

$$Pe^{rt}$$
.