1. Let P_{n} be a regular polygon with n sides and let C be the largest circle contained inside P_{n}. Suppose that C has radius r.

(a) Compute an exact formula for the perimeter of P_{n}.
(b) Compute an exact formula for the area of P_{n}.
[Hint: Divide the polygon into n triangles at its center and consider one of the triangles.

Use the fact that the angle at the center is $2 \pi / n$ radians.]
Solution: Let's take a closer look at the triangle:

The radius of the circle divides the triangle into two equal halves. Each half is a right triangle with angle π / n, adjacent side of length r, and opposite side of length ℓ. We conclude that $\tan (\pi / n)=\ell / r$ and hence $\ell=r \tan (\pi / n)$. We don't know the length of the hypotenuse, nor do we care.

For part (a), note that the perimeter of the polygon P_{n} equals

$$
n(2 \ell)=n(2 r \tan (\pi / n))=2 r n \tan (\pi / n) .
$$

For part (b), note that the height of the triangle is r and the base is $2 \ell=2 r \tan (\pi / n)$, so the area of the triangle is

$$
\frac{1}{2} \cdot \text { height } \cdot \text { base }=\frac{1}{2} \cdot r \cdot 2 r \tan (\pi / n)=r^{2} \tan (\pi / n)
$$

Hence the total area of the polygon P_{n} is

$$
n \cdot(\text { area of triangle })=n\left(r^{2} \tan (\pi / n)\right)=r^{2} n \tan (\pi / n) .
$$

2. (a) Use a calculator to compute the value of $n \tan (\pi / n)$ for $n=1,10,100,1000,10000$. Now guess the exact value of the limit

$$
\lim _{n \rightarrow \infty} n \tan (\pi / n)
$$

(b) Explain how your guess in part (a) agrees with your solution to Problem 1. [Hint: The limit of the perimeter of P_{n} as n approaches ∞ should be the circumference of the circle, i.e., $2 \pi r$.]

Solution: For part (a) we define $f(n)=n \tan (\pi / n)$ and compute a table of values:

$$
\begin{array}{c|c|c|c|c|c}
n & 1 & 10 & 100 & 1000 & 10000 \\
\hline f(n) & 0 & 3.249196963 & 3.142626605 & 3.141602989 & 3.141592757
\end{array}
$$

For reference, the value of π to 10 places is $\pi=3.141592654$. Based on this data it is reasonable to guess that

$$
\lim _{n \rightarrow \infty} n \tan (\pi / n)=\pi .
$$

For part (b), recall that the perimeter of the polygon P_{n} is $2 r n \tan (\pi / n)$. As $n \rightarrow \infty$ we expect that this perimeter approaches the circumference of the circle C, hence

$$
\lim _{n \rightarrow \infty}\left(\text { perimeter of } P_{n}\right)=(\text { circumference of } C)=2 \pi r
$$

On the other hand, the formula implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\text { perimeter of } P_{n}\right) & =\lim _{n \rightarrow \infty} 2 r n \tan (\pi / n) \\
& =2 r \cdot \lim _{n \rightarrow \infty} n \tan (\pi / n)
\end{aligned}
$$

Putting the two equations together implies that

$$
\begin{aligned}
2 r \cdot \lim _{n \rightarrow \infty} n \tan (\pi / n) & =2 \pi r \\
\lim _{n \rightarrow \infty} n \tan (\pi / n) & =\pi,
\end{aligned}
$$

which agrees with part (a).
3. We showed in class that the region between the graph of $f(x)=x^{2}$ and the x-axis, from $x=0$ to $x=1$, is exactly $1 / 3$. In this problem you will show that the area between the graph of $g(x)=x^{3}$ and the x-axis, from $x=0$ to $x=1$, is exactly $1 / 4$.
(a) Draw a picture of this region.
(b) Divide the interval between $x=0$ and $x=1$ into n equal intervals of width $1 / n$. On the interval from $x=(i-1) / n$ to $x=i / n$ draw a rectangle of height $(i / n)^{3}$. Write out an expression for the total area of these n rectangles.
(c) Compute the limit of your expression from part (b) as n approaches ∞. [Hint: You should use the algebraic formula

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} .
$$

You do not need to say why this mysterious formula is true.]

Solution: For part (a), here is a picture of the region between the graph of $g(x)=x^{3}$ and the x-axis, from $x=0$ to $x=1$:

The fancy name for the area of this region is $\int_{0}^{1} x^{3} d x$. In this problem we will show that $\int_{0}^{1} x^{3} d x=1 / 4$.

For part (b), we approximate the region by n recangles, each of width $1 / n$. The height of the i-th rectangle is $(i / n)^{3}$. Hence the total area of the n rectangles is

$$
\begin{aligned}
& \frac{1}{n}\left(\frac{1}{n}\right)^{3}+\frac{1}{n}\left(\frac{2}{n}\right)^{3}+\frac{1}{n}\left(\frac{3}{n}\right)^{3}+\cdots+\frac{1}{n}\left(\frac{n-1}{n}\right)^{3}+\frac{1}{n}\left(\frac{n}{n}\right)^{3} \\
= & \frac{1}{n}\left[\left(\frac{1}{n}\right)^{3}+\left(\frac{2}{n}\right)^{3}+\left(\frac{3}{n}\right)^{3}+\cdots+\left(\frac{n-1}{n}\right)^{3}+\left(\frac{n}{n}\right)^{3}\right] \\
= & \frac{1}{n}\left[\frac{1^{3}}{n^{3}}+\frac{2^{3}}{n^{3}}+\frac{3^{3}}{n^{3}}+\cdots+\frac{(n-1)^{3}}{n^{3}}+\frac{n^{3}}{n^{3}}\right] \\
= & \frac{1}{n} \cdot \frac{1}{n^{3}}\left[1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}+n^{3}\right] \\
= & \frac{1}{n^{4}}\left[1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}+n^{3}\right] .
\end{aligned}
$$

For part (c), we expect that as the number of rectangles approaches ∞, the area of the triangles approaches the area of our region. Then using the mysterious formula gives

$$
\begin{aligned}
\int_{0}^{1} x^{3} d x & =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}+n^{3}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{4}+\frac{1}{2 n}+\frac{1}{4 n^{2}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{4}+\lim _{n \rightarrow \infty} \frac{1}{2 n}+\lim _{n \rightarrow \infty} \frac{1}{4 n^{2}} \\
& =\frac{1}{4}+0+0 \\
& =\frac{1}{4} .
\end{aligned}
$$

